Subscribe to RSS
DOI: 10.1055/s-2006-958449
Synthesis and Properties of Oligonucleotides with Acylamido Substituents
Publication History
Publication Date:
20 December 2006 (online)
Abstract
This account recounts how a project, initially designed to generate folded peptidyl-DNA motifs for cellular delivery, led to the discovery of acylamido substituents that increase affinity for target strands and improve mismatch discrimination of hybridization probes. Our syntheses of oligonucleotides with acylamido groups involve phosphoramidites of aminodideoxynucleosides as intermediates and amide-forming reactions on solid support, performed after assembly of the DNA chain. The richly functionalized intermediates invite a host of side reactions. Strategies to suppress these side reactions are discussed. In our quest for oligonucleotides with improved biophysical and biological properties we used late, on-support combinatorial couplings to generate small chemical libraries subjected to mass-spectrometrically monitored selection experiments. The combinatorial approach was used to identify acylamido substituents at the termini that act as caps for DNA duplexes. Though truly bioavailable DNA derivatives were not found, oligonucleotides with a short dendrimer at the 5′-terminus and a blocked 3′-terminus were shown to possess improved enzymatic stability, while retaining high affinity for target strands. The on-support synthesis of acylamido DNA gives access to structurally diverse molecules with potential in biomedical applications, including the use in high-fidelity DNA microarrays.
-
1 Introduction
-
2 Synthesis of Acylamido-DNA and the Stability of Its Duplexes
-
2.1 Design and General Synthetic Aspects
-
2.2 Common Side Reactions
-
2.3 Combinatorial Syntheses
-
2.4 Oligodeoxynucleotide-Peptide Hybrids
-
2.5 Dendrimer-DNA Hybrids with Increased Nuclease Resistance
-
3 Oligonucleotides with Improved Duplex-Forming Properties
-
3.1 General Considerations
-
3.2 Oligodeoxynucleotides with Directly Linked Acylamido Substituents
-
3.3 Acylamido Caps with Linkers that Can Be Introduced as Phosphoramidites
-
3.4 Acylamido Substituents in the Interior of DNA Strands
-
4 Outlook
Abbreviations: Alloc, allyloxycarbonyl; cpg, controlled pore glass; dA, 2′-deoxyadenosine residue; dbf, di-N-butylformamidine; dC, 2′-deoxycytidine residue; dG, 2′-deoxyguanosine residue; DIEA, diisopropylethylamine; dT, thymidine residue; DMT, dimethoxytrityl; HBTU, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; HOBT, hydroxybenzotriazole; MMT, monomethoxy trityl; SMOSE, spectrometrically monitored selection experiment.
Key words
DNA - nucleosides - nucleobases - acylations - amides - peptides
-
1a
Michelson M.Todd AR. J. Chem. Soc. 1955, 2632 -
1b
Gilham PT.Khorana HG. J. Am. Chem. Soc. 1958, 80: 6212 -
2a
Letsinger RL.Lunsford WB. J. Am. Chem. Soc. 1976, 98: 3655 -
2b
McBride LJ.Caruthers MH. Tetrahedron Lett. 1983, 24: 245 -
3a
Hayakawa Y.Kataoka M. J. Am. Chem. Soc. 1998, 120: 12395 -
3b
Sekine M.Ohkubo A.Seio K. J. Org. Chem. 2003, 68: 5478 - 4
Westheimer FH. Science 1987, 235: 1173 - 5
Beier M.Reck F.Wagner T.Krishnamurthy R.Eschenmoser A. Science 1999, 283: 699 - 6
Stephenson ML.Zamecnik PC. Proc. Natl. Acad. Sci. U.S.A. 1978, 75: 285 - For example, see:
-
7a
Stein CA.Cheng Y.-C. Science 1993, 261: 1004 -
7b
DeMesmaeker A.Haener R.Martin P.Moser HE. Acc. Chem. Res. 1995, 28: 366 -
7c
Agrawal S. Biochim. Biophys. Acta 1999, 1489: 53 - 8
Richert C.Roughton AL.Benner SA. J. Am. Chem. Soc. 1996, 118: 4518 -
9a
Egholm M.Burchardt O.Nielsen PE.Berg RH. J. Am. Chem. Soc. 1992, 114: 1895 -
9b
Uhlmann E.Peyman A.Breipohl G.Will DW. Angew. Chem. Int. Ed. 1998, 37: 2797 -
10a
Koshkin AA.Nielsen P.Meldgaard M.Rajwanshi VK.Singh SK.Wengel J. J. Am. Chem. Soc. 1998, 120: 13252 -
10b
Obika S.Nanbu D.Hari Y.Morio K.-I.In Y.Ishida T.Imanishi T. Tetrahedron Lett. 1997, 38: 8735 -
11a
Chen JK.Schultz RG.Lloyd DH.Gryaznov SM. Nucleic Acids Res. 1995, 23: 2661 -
11b
Gryaznov SM.Lloyd DH.Chen JK.Schultz RG.DeDionisio LA.Ratmeyer L.Wilson WD. Proc. Natl. Acad. Sci. U.S.A. 1995, 92: 5798 -
11c
Mignet N.Gryaznov SM. Nucleic Acids Res. 1998, 26: 431 -
12a
Linkletter BA.Szabo IE.Bruice TC. J. Am. Chem. Soc. 1999, 121: 3888 -
12b
Linkletter BA.Szabo IE.Bruice TC. Nucleic Acids Res. 2001, 29: 2370 - 13
Taubes G. Science 2002, 298: 2116 -
14a
Ambros V. Cell 2001, 107: 823 -
14b
Carrington JC.Ambros V. Science 2003, 301: 336 -
14c
Liu C.-G.Calin GA.Meloon B.Gamliel N.Sevignani C.Ferracin M.Dumitru CD.Shimizu M.Zupo S.Dono M.Alder H.Bullrich F.Negrini M.Croce CM. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 9740 -
14d
Lim LP.Lau NC.Garrett-Engele P.Grimson A.Schelter JM.Castle J.Bartel DP.Linsley PS.Johnson JM. Nature 2005, 433: 769 -
14e
Lecellier C.-H.Dunoyer P.Arar K.Lehmann-Che J.Eyquem S.Himber C.Saib A.Voinnet O. Science 2005, 308: 557 - For example, see:
-
15a
Soutschek J.Akinc A.Bramlage B.Charisse K.Constien R.Donoghue M.Elbashir S.Geick A.Hadwiger P.Harborth J.John M.Kesavan V.Lavine G.Pandey RK.Racie T.Rajeev KG.Rohl I.Toudjarska I.Wang G.Wuschko S.Bumcrot D.Koteliansky V.Limmer S.Manoharan M.Vornlocher HP. Nature 2004, 432: 173 -
15b
Krützfeldt J.Rajewsky N.Braich R.Rajeev KG.Tuschl T.Manoharan M.Stoffel M. Nature 2005, 438: 685 - 16
Kottysch T.Ahlborn C.Brotzel F.Richert C. Chem. Eur. J. 2004, 10: 4017 - 17
Grünefeld P.Richert C. J. Org. Chem. 2004, 69: 7543 - 18
Narayanan S.Gall J.Richert C. Nucleic Acids Res. 2004, 32: 2901 - 19
Mokhir AA.Tetzlaff CN.Herzberger S.Mosbacher A.Richert C. J. Comb. Chem. 2001, 3: 374 - 20
Rojas Stütz JA.Richert C. Tetrahedron Lett. 2004, 45: 509 - 21
Tetzlaff CN.Schwope I.Bleczinski CF.Steinberg JA.Richert C. Tetrahedron Lett. 1998, 39: 4215 - 22
Mag M.Engels JW. Nucleic Acids Res. 1989, 17: 5973 - 23
Bannwarth W. Helv. Chim. Acta 1988, 71: 1517 -
24a
Hendrix C.Devreese B.Rozenski J.van Aerschot A.De Bruyn A.van Beeumen J.Herdewijn P. Nucleic Acids Res. 1995, 23: 51 -
24b
Cohen SB.Cech TR. J. Am. Chem. Soc. 1997, 119: 6259 -
24c
Yamana K.Mitsui T.Nakano H. Tetrahedron 1999, 55: 9143 -
24d
Milne L.Perrin DM.Sigman DS. Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 3136 -
25a
Verheyden JPH.Wagner D.Moffatt JG. J. Org. Chem. 1971, 36: 250 -
25b
McGee DPC.Vargeese C.Zhai Y.Kirschenheuter GP.Settle A.Siedem CR.Pieken W. Nucleosides Nucleotides 1995, 14: 1329 -
25c
McGee DPC.Sebesta DP.O’Rourke SS.Martinez RL.Jung ME.Pieken W. Tetrahedron Lett. 1996, 37: 1995 -
26a
McGee DP.Vaughn-Settle A.Vargeese C.Zhai Y. J. Org. Chem. 1996, 61: 781 -
26b
Höbartner C.Micura R. J. Am. Chem. Soc. 2004, 126: 1141 - 27
Kryatova OP.Connors WH.Bleczinski CF.Mokhir AA.Richert C. Org. Lett. 2001, 3: 987 - 28
Connors WH.Narayanan S.Kryatova OP.Richert C. Org. Lett. 2003, 5: 247 - 29
Al-Rawy S.Ahlborn C.Richert C. Org. Lett. 2005, 7: 1569 - 30
Dombi KL.Griesang N.Richert C. Synthesis 2002, 816 - 32 Known to also exist as guanidinium salts, see:
Carpino LA.Imazumi H.El-Faham A.Ferrer FJ.Zhang C.Lee Y.Foxman BM.Henklein P.Hanay C.Mügge C.Wenschuh H.Klose J.Beyermann M.Bienert M. Angew. Chem. Int. Ed. 2002, 41: 441 ; Angew. Chem. 2002, 114, 458 - 33
Schwope I.Bleczinski CF.Richert C. J. Org. Chem. 1999, 64: 4749 - 34
Zhu Q.Delaney MO.Greenberg MM. Bioorg. Med. Chem. Lett. 2001, 11: 1105 - 35
Palom Y.Grandas A.Pedroso E. Nucleosides Nucleotides 1998, 17: 1177 - 36 See also:
Uhlmann E.Pfleiderer W. Tetrahedron Lett. 1980, 21: 1181 - 37
Stengele KP.Pfleiderer W. Tetrahedron Lett. 1990, 31: 2549 - 38
Brown T.Pritchard CE.Turner G.Salisbury SA. J. Chem. Soc., Chem. Commun. 1989, 14: 891 -
39a
Ho WC.Steinbeck C.Richert C. Biochemistry 1999, 38: 12597 -
39b
Tuma J.Connors WH.Stitelman DH.Richert C. J. Am. Chem. Soc. 2002, 124: 4236 -
39c
Tuma J.Paulini R.Rojas Stütz JA.Richert C. Biochemistry 2004, 43: 15680 -
39d
Siegmund K.Maheshwary S.Narayanan S.Connors W.Riedrich M.Printz M.Richert C. Nucleic Acids Res. 2005, 33: 4838 - 40
Peyrottes S.Mestre B.Burlina F.Gait MJ. Tetrahedron 1998, 54: 12513 - 41
Guzaev AP.Manoharan M. J. Org. Chem. 2001, 66: 1798 - 42
Kanavarioti A.Stronach MW.Ketner RJ.Hurley TB. J. Org. Chem. 1995, 60: 632 - 43
Dogan Z.Paulini R.Rojas Stütz JA.Narayanan S.Richert C. J. Am. Chem. Soc. 2004, 126: 4762 - 44
Sambrook J.Fritsch EF.Maniatis T. Molecular cloning: a laboratory manual 2nd ed.: Cold Spring Harbour Laboratory Press; Cold Spring Harbour, New York: 1989. - 45
Berlin K.Jain RK.Simon MD.Richert C. J. Org. Chem. 1998, 63: 1527 - 46
Berlin K.Jain RK.Tetzlaff C.Steinbeck C.Richert C. Chem. Biol. 1997, 4: 63 - 47
Altman RK.Schwope I.Sarracino DA.Tetzlaff CN.Bleczinski CF.Richert C. J. Comb. Chem. 1999, 1: 493 - 48
Harrison JG.Balasubramanian S. Nucleic Acids Res. 1998, 26: 3136 - 49
Dombi KL.Steiner UE.Richert C. J. Comb. Chem. 2003, 5: 45 - 50
Ernst T.Richert C. Synlett 2005, 411 -
52a
Kuyl-Yeheskiely E.Tromp CM.Schaeffer AH.van der Marel GA.Van Boom JH. Nucleic Acids Res. 1987, 15: 1807 -
52b
Kuyl-Yeheskiely E.Tromp CM.Lefeber AWM.van der Marel GA.van Boom JH. Tetrahedron 1988, 44: 6515 -
52c
Kuyl-Yeheskiely E.Dreef-Tromp CM.Geluk A.van der Marel GA.van Boom JH. Nucleic Acids Res. 1989, 17: 2897 -
52d
Dreef-Tromp CM.van Dam EMA.van den Elst H.van der Marel GA.van Boom JH. Nucleic Acids Res. 1990, 18: 6491 -
52e
Dreef-Tromp CM.van der Maarel JCM.van den Elst H.van der Marel GA.van Boom JH. Nucleic Acids Res. 1992, 20: 4015 -
53a
Eritja R.Pons A.Escarceller M.Giralt E.Albericio F. Tetrahedron 1991, 47: 4113 -
53b
Robles J.Pedroso E.Grandas A. Tetrahedron Lett. 1991, 32: 4389 -
53c
De la Torre BG.Avino A.Tarrason G.Piulats J.Albericio F.Eritja R. Tetrahedron Lett. 1994, 35: 2733 -
53d
Robles J.Maseda M.Beltrán M.Concernau M.Pedroso E.Grandas A. Bioconjugate Chem. 1997, 8: 785 -
53e
Beltran M.Maseda M.Perez Y.Robles J.Pedroso E.Grandas A. Nucleosides Nucleotides 1997, 16: 1487 -
53f
Beltrán M.Pedroso E.Grandas A. Tetrahedron Lett. 1998, 39: 4115 - Selected publications:
-
54a
Bergmann F.Bannwarth W. Tetrahedron Lett. 1995, 36: 1839 -
54b
Guibourdenche C.Seebach D. Helv. Chim. Acta 1997, 80: 1 -
54c
Oliver JS.Oyelere AK. Tetrahedron Lett. 1997, 38: 4005 -
54d
Vivès E.Lebleu B. Tetrahedron Lett. 1997, 38: 1183 -
54e
Waldmann H.Gabold S. Chem. Commun. 1997, 19: 1861 - 55
Juodka BA. Nucleosides Nucleotides 1984, 3: 445 - For example, see:
-
56a
Haralambidis J.Duncan L.Tregear GW. Tetrahedron Lett. 1987, 28: 5199 -
56b
Hotoda H.Ueno Y.Sekine M.Hata T. Tetrahedron Lett. 1989, 30: 2117 -
56c
Juby CD.Richardson CD.Brousseau R. Tetrahedron Lett. 1991, 32: 879 -
56d
Soukchareun S.Tregear GW.Haralambidis J. Bioconjugate Chem. 1995, 6: 43 -
56e
Truffert JC.Asseline U.Brack A.Thuong NT. Tetrahedron 1996, 52: 3005 -
56f
Jensen ON.Kulkarni S.Aldrich JV.Barofsky DF. Nucleic Acids Res. 1996, 24: 3866 - Selected references:
-
57a
Stetsenko DA.Gait MJ. J. Org. Chem. 2000, 65: 4900 -
57b
Stetsenko DA.Gait MJ. Bioconjugate Chem. 2001, 12: 576 -
57c
Stetsenko DA.Malakhov AD.Gait MJ. Org. Lett. 2002, 4: 3259 -
57d
Zatsepin TS.Stetsenko DA.Arzumanov AA.Romanova EA.Gait MJ.Oretskaya TS. Bioconjugate Chem. 2002, 13: 822 -
57e
Stetsenko DA.Malakhov AD.Gait MJ. Nucleosides Nucleotides Nucleic Acids 2003, 22: 1379 -
57f
Zatsepin TS.Stetsenko DA.Gait MJ.Oretskaya TS. Tetrahedron Lett. 2005, 46: 3191 -
58a
Zhu T.Wei Z.Tung CH.Dickerhof WA.Breslauer KJ.Georgopoulos DE.Leibowitz MJ.Stein S. Antisense Res. Dev. 1993, 3: 265 -
58b
Corey DR. J. Am. Chem. Soc. 1995, 117: 9373 -
58c
Truffert JC.Asseline U.Thuong NT.Brack A. Protein Pept. Lett. 1995, 2: 419 -
58d
Wei Z.Tung C.-H.Zhu T.Dickerhof WA.Breslauer KJ.Geogopoulos DE.Leibowitz MJ.Stein S. Nucleic Acids Res. 1996, 24: 655 - 59
Uhlmann E.Peyman A. Chem. Rev. 1990, 90: 544 -
60a
Weiler S.Ariatti M.Hawtrey AO. Med. Sci. Res. 1993, 21: 827 -
60b
Rajur SB.Roth CM.Morgan JR.Yarmush ML. Bioconjugate Chem. 1997, 8: 935 -
60c
Manoharan M.Tivel KL.Condon TP.Andrade LK.Barber-Peoch I.Inamati G.Shah S.Mohan V.Graham MJ.Bennett CF.Crooke ST.Cook PD. Nucleosides Nucleotides 1997, 16: 1129 - 61
Robles J.Pedroso E.Grandas A. J. Org. Chem. 1995, 60: 4856 - See e.g.
-
62a
Forget D.Boturyn D.Defrancq E.Lhomme J.Dumy P. Chem. Eur. J. 2001, 7: 3976 -
62b
Singh Y.Defrancq E.Dumy P. J. Org. Chem. 2004, 69: 8544 -
63a
Arar K.Aubertin A.-M.Roche A.-C.Monsigny M.Mayer R. Bioconjugate Chem. 1995, 6: 573 -
63b
McMinn DL.Greenberg MM. Bioorg. Med. Chem. Lett. 1999, 9: 547-550 - 64
Tung CH.Rudolph MJ.Stein S. Bioconjugate Chem. 1991, 2: 464 - 65
Bruick RC.Dawson PE.Kent SBH.Usman N.Joyce GF. Chem. Biol. 1996, 3: 49 - 66
Ueno Y.Saito R.Hata T. Nucleic Acids Res. 1993, 21: 4451 - 67
Kuyl-Yeheskiely E.Van der Klein PAM.Visser GM.Van der Marel GA.Van Boom JH. Recl. Trav. Chim. Pays-Bas 1986, 105: 69 - 68
Sarracino DA.Steinberg JA.Vergo MT.Woodworth GF.Tetzlaff CN.Richert C. Bioorg. Med. Chem. Lett. 1998, 8: 2511 - 69 For a structural proposal involving double-stranded DNA, see:
Yang C.-C.Nash HA. Cell 1989, 57: 869 - 70
Reed MW.Fraga D.Schwartz DE.Scholler J.Hinrichsen RD. Bioconjugate Chem. 1995, 6: 101 - 72
Suzuki M. EMBO J. 1989, 8: 797-804 - 73
Suzuki M.Gerstein M.Johnson T. Protein Eng. 1993, 6: 565-574 - 74
Bleczinski CF.Richert C. Org. Lett. 2000, 2: 1697 - 75
Gait MJ. Cell. Mol. Life Sci. 2003, 60: 1 -
76a
Fodor SPA.Read JL.Pirrung MC.Stryer L.Lu AT.Solas D. Science 1991, 251: 767 -
76b
Southern EM.Mir K.Shchepinov M. Nat. Genet. 1999, 21: 5 -
76c
Lockhardt DJ.Winzeler EA. Nature 2000, 405: 827 -
76d
Pirrung MC. Angew. Chem. 2002, 114: 1327 ; Angew. Chem. Int. Ed.; 2002, 41: 1276 - 77
Marshall E. Science 2004, 306: 630 - See also:
-
78a
Siegmund K.Steiner UE.Richert C. J. Chem. Inf. Comput. Sci. 2003, 43: 2153-2162 -
78b
Plutowski U.Richert C. Angew. Chem. 2005, 117: 627-631 ; Angew. Chem., Int. Ed. Engl.; 2005, 44: 621-625 -
79a
Watson JD.Crick FH. Nature 1953, 171: 737 -
79b
Watson JD.Crick FH. Nature 1953, 171: 964 - 80
Nucleic Acids in Chemistry and Biology
Blackburn GM.Gait MJ. Oxford University Press; Oxford: 1996. - 81
Crick FHC. J. Mol. Biol. 1966, 19: 548 - 82
Bleczinski CF.Richert C. J. Am. Chem. Soc. 1999, 121: 10889 - 83
Bijsterbosch MK.Rump ET.De Vrueh RL.Dorland R.van Veghel R.Tivel KL.Biessen EA.van Berkel TJ.Manoharan M. Nucleic Acids Res. 2000, 28: 2717 -
84a
Puri N.Zamaratski E.Sund C.Chattopadhyaya J. Tetrahedron 1997, 53: 10409 -
84b
Zamaratski E.Chattopadhyaya J. Tetrahedron 1998, 54: 8183 -
84c
Ossipov D.Pradeepkumar PI.Holmer M.Chattopadhyaya J. J. Am. Chem. Soc. 2001, 123: 3551 -
85a
Lewis FD.Wu T.Zhang Y.Letsinger RL.Greenfield SR.Wasielewski MR. Science 1997, 277: 673 -
85b
Sanishivili RL.Joachimiak A.Tereshko V.Egli M. J. Am. Chem. Soc. 1999, 121: 9905 -
85c
Lewis FD.Wu TF.Liu XY.Letsinger RL.Greenfield SR.Miller SE.Wasielewski MR. J. Am. Chem. Soc. 2000, 122: 2889 -
85d
Lewis FD.Wu YS.Liu XY. J. Am. Chem. Soc. 2002, 124: 12165 -
86a
Guckian KM.Schweitzer BA.Ren RXF.Sheils CJ.Paris PL.Tahmassebi DC.Kool ET. J. Am. Chem. Soc. 1996, 118: 8182 -
86b
Ren RXF.Chaudhuri NC.Paris PL.Rumney S.Kool ET. J. Am. Chem. Soc. 1996, 118: 7671 - 87
Nguyen HK.Fournier O.Asseline U.Dupret D.Thuong NT. Nucleic Acids Res. 1999, 27: 1492 -
88a
Rojas Stütz JA.Richert C. J. Am. Chem. Soc. 2001, 123: 12718 -
88b
Baumhof P.Griesang N.Bächle M.Richert C. J. Org. Chem. 2006, 71: 1060 -
88c
Rojas Stütz JA.Richert C. Chem. Eur. J. 2006, 12: 24722
References
Printz M., Richert C. J. Comb. Chem., accepted.
51Spies S., Röttele H., Richert C. research project for high-school students, Karlsruhe, 2005; unpublished results.
71Tetzlaff C. N., Ph.D. thesis, Tufts University, 2001.
89Rojas Stütz, J. A.; Kervio, E.; Deck, C.; Richert, C.; manuscript submitted.