Abstract
The photochemically initiated dehydro-Diels-Alder (PDDA) reaction is an efficient
and versatile method for the preparation of biaryls. The ring closure may take place
both inter- and intramolecularly, of which the intramolecular variant is more productive
from the preparative point of view. A variety of linkers can be employed to connect
the ynone moiety, which acts as the chromophore, with another acetylene group, thus
allowing large structural versatility. Principles influencing the site selectivity
of the PDDA reaction will also be discussed here.
Key words
photochemistry - biaryls - alkynes - photo-dehydro-Diels-Alder reaction - cyclizations
References
<A NAME="RT12106SS-1A">1a </A>
Acetylene Chemistry
Diederich F.
Stang PJ.
Tykwinski RR.
Wiley-VCH;
Weinheim:
2005.
<A NAME="RT12106SS-1B">1b </A>
Brandsma L.
Synthesis of Acetylenes, Allenes and Cumulenes
Elsevier;
Amsterdam:
2004.
<A NAME="RT12106SS-2">2 </A>
Miller SI.
Dickstein JI.
Acc. Chem. Res.
1976,
9:
358
<A NAME="RT12106SS-3A">3a </A>
Glaser C.
Chem. Ber.
1869,
2:
422
<A NAME="RT12106SS-3B">3b </A>
Hay A.
J. Org. Chem.
1960,
25:
2928
<A NAME="RT12106SS-3C">3c </A>
Hay A.
J. Org. Chem.
1962,
27:
3320
<A NAME="RT12106SS-3D">3d </A>
Tang J.-Y.
Jiang H.-F.
Deng G.-H.
Zhou L.
Youji Huaxue
2005,
25:
1503
<A NAME="RT12106SS-3E">3e </A>
Bunz UHF.
Chem. Rev.
2000,
100:
1605
<A NAME="RT12106SS-4">4 </A>
Nakamura M.
Pure Appl. Chem.
2006,
78:
425
<A NAME="RT12106SS-5">5 </A>
Fürstner A.
Davies PW.
Chem. Commun.
2005,
2307
<A NAME="RT12106SS-6A">6a </A>
Kimling H.
Krebs A.
Angew. Chem., Int. Ed. Engl.
1972,
11:
932
<A NAME="RT12106SS-6B">6b </A>
Krebs A.
Kimling H.
Kemper R.
Justus Liebigs Ann. Chem.
1978,
431
<A NAME="RT12106SS-6C">6c </A>
Krebs A.
Kemper R.
Kimling H.
Klaska K.-H.
Klaska R.
Liebigs Ann. Chem.
1979,
473
<A NAME="RT12106SS-6D">6d </A>
Irngartinger H.
Nixdorf M.
Riegler NH.
Krebs A.
Kimling H.
Maier G.
Malsch K.-D.
Schneider KA.
Pocklington J.
Chem. Ber.
1988,
121:
673
<A NAME="RT12106SS-6E">6e </A>
Eisch JJ.
Galle JE.
Hallenbeck LE.
J. Org. Chem.
1982,
47:
1610
<A NAME="RT12106SS-6F">6f </A>
Eisch JJ.
Hallenbeck LE.
Lucarelli MA.
J. Org. Chem.
1991,
56:
4095
<A NAME="RT12106SS-6G">6g </A>
Grotjahn DB.
Vollhardt KPC.
J. Am. Chem. Soc.
1986,
108:
2091
<A NAME="RT12106SS-6H">6h </A>
Sekiguchi A.
Matsuo T.
Watanave H.
Phosphorus Sulfur Silicon Relat. Elem.
2001,
168:
51
<A NAME="RT12106SS-7A">7a </A>
Bergman RG.
J. Am. Chem. Soc.
1972,
94:
660
<A NAME="RT12106SS-7B">7b </A>
Bergman RG.
Acc. Chem. Res.
1973,
6:
25
<A NAME="RT12106SS-7C">7c </A>
Lockhart TP.
Bergman RG.
J. Am. Chem. Soc.
1981,
103:
4091
<A NAME="RT12106SS-8">8 </A>
Dai W.-M.
Curr. Med. Chem.
2003,
10:
2265
<A NAME="RT12106SS-9A">9a </A>
Smith AL.
Hwang C.-K.
Pitsinos EN.
Scarlato GR.
Nicolaou KC.
J. Am. Chem. Soc.
1992,
114:
3134
<A NAME="RT12106SS-9B">9b </A>
Nicolaou KC.
Hummel CW.
Pitsinos EN.
Nakada M.
Smith AL.
Shibayama K.
Saimoto H.
J. Am. Chem. Soc.
1992,
114:
10082
<A NAME="RT12106SS-10A">10a </A>
Kerwin SM.
Nadipuram A.
Synlett
2004,
1404
<A NAME="RT12106SS-10B">10b </A>
Klein M.
König B.
Tetrahedron
2004,
60:
1087
<A NAME="RT12106SS-11">11 </A>
Michael A.
Bucher JE.
Chem. Ber.
1895,
28:
2511
<A NAME="RT12106SS-12">12 </A>
Pfeiffer P.
Möller W.
Chem. Ber.
1907,
40:
3841
<A NAME="RT12106SS-13A">13a </A>
Bucher JE.
J. Am. Chem. Soc.
1910,
32:
212
<A NAME="RT12106SS-13B">13b </A>
Haworth RD.
Sheldrick G.
J. Chem. Soc.
1935,
636
<A NAME="RT12106SS-13C">13c </A>
Haworth RD.
Kelly W.
J. Chem. Soc.
1936,
745
<A NAME="RT12106SS-13D">13d </A>
Baddar FG.
El-Assal LS.
Doss NA.
J. Chem. Soc.
1959,
1027
<A NAME="RT12106SS-13E">13e </A>
Brown D.
Stevenson R.
J. Org. Chem.
1965,
30:
1759
<A NAME="RT12106SS-13F">13f </A>
Klemm LH.
Gopinath KW.
Lee DH.
Kelley FW.
Trod E.
McGuire TM.
Tetrahedron
1966,
22:
1797
<A NAME="RT12106SS-14">14 </A>
Müller E.
Sauerbier M.
Streichfuß D.
Thomas R.
Winter W.
Zountsas G.
Justus Liebigs Ann. Chem.
1971,
750:
63
<A NAME="RT12106SS-15">15 </A>
Müller E.
Odenigbo G.
Justus Liebigs Ann. Chem.
1975,
1435
<A NAME="RT12106SS-16">16 </A>
Wagner F.
Meier H.
Tetrahedron
1974,
30:
773
<A NAME="RT12106SS-17A">17a </A>
Wessig P.
Wettstein P.
Giese B.
Neuburger M.
Zehnder M.
Helv. Chim. Acta
1994,
77:
829
<A NAME="RT12106SS-17B">17b </A>
Steiner A.
Wessig P.
Polborn K.
Helv. Chim. Acta
1996,
79:
1843
<A NAME="RT12106SS-17C">17c </A>
Lindemann U.
Wulff-Molder D.
Wessig P.
J. Photochem. Photobiol., A
1998,
119:
73
<A NAME="RT12106SS-17D">17d </A>
Wessig P.
Schwarz J.
Helv. Chim. Acta
1998,
81:
1803
<A NAME="RT12106SS-17E">17e </A>
Lindemann U.
Wulff-Molder D.
Wessig P.
Tetrahedron: Asymmetry
1998,
9:
4459
<A NAME="RT12106SS-17F">17f </A>
Wessig P.
Tetrahedron Lett.
1999,
40:
5987
<A NAME="RT12106SS-17G">17g </A>
Wessig P.
Schwarz J.
Lindemann U.
Holthausen MC.
Synthesis
2001,
1258
<A NAME="RT12106SS-17H">17h </A>
Wessig P.
Mühling O.
Angew. Chem. Int. Ed.
2001,
40:
1064
<A NAME="RT12106SS-17I">17i </A>
Wessig P.
Mühling O.
Helv. Chim. Acta
2003,
86:
865
<A NAME="RT12106SS-17J">17j </A>
Wessig P.
Glombitza C.
Müller G.
Teubner J.
J. Org. Chem.
2004,
69:
7582
<A NAME="RT12106SS-17K">17k </A>
Wessig P.
Mühling O.
Angew. Chem. Int. Ed.
2005,
45:
6778
<A NAME="RT12106SS-17L">17l </A>
Wessig P.
Teubner J.
Synlett
2006,
1543
<A NAME="RT12106SS-18A">18a </A>
Wessig P.
Müller G.
Kühn A.
Herre R.
Blumenthal H.
Troelenberg S.
Synthesis
2005,
1445
For another example of the PDDA reaction, see:
<A NAME="RT12106SS-18B">18b </A>
Witte B.
Margaretha P.
J. Inf. Rec.
2000,
25:
225
<A NAME="RT12106SS-19">19 </A>
Wessig P.
Müller G.
Herre R.
Kühn A.
Helv. Chim. Acta
2006,
89:
2694
Compounds 5a -d have already been prepared by other methods. For 5a , see:
<A NAME="RT12106SS-20A">20a </A>
Cox RJ.
Ritson DJ.
Dane TA.
Berge J.
Charmant JP.
Kantacha A.
Chem. Commun.
2005,
1037
For 5b , see:
<A NAME="RT12106SS-20B">20b </A>
Bellina F.
Carpita A.
Ciucci D.
Santis M.
Rossi R.
Tetrahedron
1993,
49:
4677
For 5c , see:
<A NAME="RT12106SS-20C">20c </A>
Katrizky AR.
Lang H.
J. Org. Chem.
1995,
60:
7612
For 5d , see:
<A NAME="RT12106SS-20D">20d </A>
Van den Hoven BG.
Ali BE.
Alper H.
J. Org. Chem.
2000,
65:
4131
<A NAME="RT12106SS-21A">21a </A>
Dess DB.
Martin JC.
J. Org. Chem.
1983,
48:
4156
<A NAME="RT12106SS-21B">21b </A>
Dess DB.
Martin JC.
J. Am. Chem. Soc.
1991,
113:
7277
<A NAME="RT12106SS-22A">22a </A>
Bringmann G.
Price Mortimer AJ.
Keller PK.
Gresser MJ.
Garner J.
Breuning M.
Angew. Chem. Int. Ed.
2005,
44:
5384
<A NAME="RT12106SS-22B">22b </A>
Cepanec I.
Synthesis of Biaryls
Elsevier;
Amsterdam:
2004.
<A NAME="RT12106SS-23A">23a </A>
Berens U.
Brown JM.
Long J.
Selke R.
Tetrahedron: Asymmetry
1996,
7:
285
<A NAME="RT12106SS-23B">23b </A>
Benincori T.
Brenna E.
Sannicolo F.
Trimarco L.
Antognazza P.
Cesarotti E.
J. Chem. Soc., Chem. Commun.
1995,
685
<A NAME="RT12106SS-23C">23c </A>
Benincori T.
Brenna E.
Sannicolo F.
Trimarco L.
Antognazza P.
Cesarotti E.
Demartin F.
Pilati T.
J. Org. Chem.
1996,
61:
6244
<A NAME="RT12106SS-24A">24a </A>
Fuji K.
Node M.
Tanaka F.
Hosoi S.
Tetrahedron Lett.
1989,
30:
2825
<A NAME="RT12106SS-24B">24b </A>
Fuji K.
Node M.
Tanaka F.
Tetrahedron Lett.
1990,
31:
6553
<A NAME="RT12106SS-24C">24c </A>
Fuji K.
Tanaka F.
Node M.
Tetrahedron Lett.
1991,
32:
7281
<A NAME="RT12106SS-24D">24d </A>
Tanaka F.
Node M.
Tanaka K.
Mizuchi M.
Hosoi S.
Nakayama M.
Taga T.
Fuji K.
J. Am. Chem. Soc.
1995,
117:
12159
<A NAME="RT12106SS-24E">24e </A>
Tanaka K.
Ahn M.
Watanabe Y.
Fuji K.
Tetrahedron: Asymmetry
1996,
7:
1771
<A NAME="RT12106SS-24F">24f </A>
Ahn M.
Tanaka K.
Fuji K.
J. Chem. Soc., Perkin Trans. 1
1998,
185
<A NAME="RT12106SS-24G">24g </A>
Tada M.
Nishiiri S.
Zhixiang Y.
Imai Y.
Tajima S.
Okazaki N.
Kitano Y.
Chiba K.
J. Chem. Soc., Perkin Trans. 1
2000,
2657
<A NAME="RT12106SS-25">25 </A>
Larock RC.
Tu C.
Pace P.
J. Org. Chem.
1998,
63:
6859
<A NAME="RT12106SS-26A">26a </A>
Bonifacio VDB.
Synlett
2004,
1649
<A NAME="RT12106SS-26B">26b </A>
Chen BC.
Heterocycles
1991,
323:
529
<A NAME="RT12106SS-27A">27a </A>
Toth G.
Koever KE.
Synth. Commun.
1995,
25:
3067
<A NAME="RT12106SS-27B">27b </A>
Kawasaki N.
Goto M.
Kawabata S.
Kometani T.
Tetrahedron: Asymmetry
2001,
12:
585
<A NAME="RT12106SS-27C">27c </A>
Englert HC.
Gerlach U.
Goegelein H.
Hartung J.
Heitsch H.
Mania D.
Scheidler S.
J. Med. Chem.
2001,
44:
1085
<A NAME="RT12106SS-28">28 </A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
4467
Compound 19a is commercially available. For the preparation of compound 19b , see:
<A NAME="RT12106SS-29A">29a </A>
Ipaktschi J.
Hosseinzahed R.
Schlaf P.
Eckert T.
Helv. Chim. Acta
2000,
83:
1224
For the preparation of compound 19c , see:
<A NAME="RT12106SS-29B">29b </A>
Rao PNP.
Uddin J.
Knaus EE.
J. Med. Chem.
2004,
47:
3972
Compounds 22a -c have already been prepared by other methods. For 22a , see:
<A NAME="RT12106SS-30A">30a </A>
Freeman F.
Kim DSHL.
Rodriguez E.
J. Org. Chem.
1992,
57:
1722
For 22b ,c , see:
<A NAME="RT12106SS-30B">30b </A>
Foud FS.
Wright JM.
Plourde G.
Purohit AD.
Wyatt JK.
El-Shafy A.
Hyad G.
Crasto CF.
Lin Y.
Jones GB.
J. Org. Chem.
2005,
70:
9789. For 22d ,e , see ref. 18a
<A NAME="RT12106SS-31">31 </A>
Compounds 33 were used without further purification.
Compounds 32 have already been described in the literature. For 32 , Ar2 = Ph, n = 1, see:
<A NAME="RT12106SS-32A">32a </A>
Molinaro C.
Jamison TF.
J. Am. Chem. Soc.
2003,
125:
8076
For 32 , Ar2 = PMP, n = 1, see:
<A NAME="RT12106SS-32B">32b </A>
Campi E. M., Chong J. M., Jackson W. R., van der Schoot M.; Tetrahedron; 1994 , 50 : 2533. For 32 , Ar2 = 4-ClC6 H4 and Ar2 = 4-F3 CC6 H4 , n = 1, see ref. 18a. For 32 , Ar2 = 1-naphthyl, n = 1, see:
<A NAME="RT12106SS-32C">32c </A>
Feuerstein M.
Berthiol F.
Doucet H.
Santelli M.
Synthesis
2004,
1281
For 32 , Ar2 = Ph, n = 2, see:
<A NAME="RT12106SS-32D">32d </A>
Roesch KR.
Larock RC.
J. Org. Chem.
2001,
66:
412 ; For Ar2 = 1-naphthyl, n = 2, see ref. 34
<A NAME="RT12106SS-33">33 </A>
Analytical data of 23a and 24j are given in Table
[5 ]
. For 23b and 24k , see ref. 34. For 24a -i , see ref. 18a.
<A NAME="RT12106SS-34">34 </A>
Wessig P.
Müller G.
Chem. Commun.
2006,
4524
<A NAME="RT12106SS-35">35 </A>
March J.
Advanced Organic Chemistry
4th ed.:
Wiley;
New York:
1992.
p.280
<A NAME="RT12106SS-36">36 </A>
Klemm LH.
Hsu Lee D.
Gopinath KW.
Klopfenstein CE.
J. Org. Chem.
1966,
31:
2376
<A NAME="RT12106SS-37">37 </A>
Yamaji M.
Kobayashi J.
Tobita S.
Photochem. Photobiol.
2005,
4:
294
<A NAME="RT12106SS-38">38 </A>
Compounds 66 and 67 are commercially available.
<A NAME="RT12106SS-39">39 </A> Compound 68 has already been described in the literature, see:
Choualeb A.
Braunstein P.
Rose J.
Welter R.
Inorg. Chem.
2004,
43:
57
<A NAME="RT12106SS-40">40 </A> The 1 H NMR data of 29a , 69a and 70a have already been published, see:
Klemm LH.
McGuire TM.
Gopinath KW.
J. Org. Chem.
1976,
41:
2571. The 13 C NMR and MS data are given in Table 5