Abstract
A practical and stereocontrolled synthetic approach towards the ansa chain of the benzenic ansamycins (mycotrienins) is described, which can be scaled up to multigram quantities. Key features of the synthesis are the formation of the Z -configured trisubstituted double bond by a one-pot esterification of allyl(diisopropoxy)borane and ring-closing metathesis, formation of the β-keto ester via ethyl diazoacetate addition to an aldehyde, and use of the Duthaler-Hafner acetate aldol reaction for the introduction of the stereocenter at C3. The practicality of this synthesis is demonstrated by the preparation of an ansatrienol derivative, representing a formal total synthesis of the ansatrienins.
Key words
aldol reaction - ansamycin antibiotics - macrolactamization - ring-closing metathesis - total synthesis
References 1 Rüdiger Wittenberg, current address: DS-Chemie GmbH, Straubinger Straße 12, 28219 Bremen, Germany; Kai-Uwe Schöning, current address: Ciba Speciality Chemicals Inc., R-1059.4.04, 4002 Basel, Switzerland; Stefan Kamlage, current address: Institut für Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
2
Funayama S.
Cordell GA.
Stud. Nat. Prod. Chem.
2000,
23:
51
3a
Weber W.
Zähner H.
Damberg M.
Russ P.
Zeeck A.
Zbl. Bakt. Hyg., I. Abt. Orig. C2
1981,
122
3b
Zeeck A.
Damberg M.
Russ P.
Tetrahedron Lett.
1982,
23:
59
4a
Sugita M.
Furihata K.
Seto H.
Otake N.
Sasaki T.
Agric. Biol. Chem.
1982,
46:
1111
4b
Sugita M.
Sasaki T.
Furihata K.
Seto H.
Otake N.
J. Antibiot.
1982,
35:
1467
4c
Sugita M.
Natori Y.
Sueda N.
Furihata K.
Seto H.
Otake N.
J. Antibiot.
1982,
35:
1474
4d
Sugita M.
Hiramato S.
Ando C.
Sasaki T.
Furihata K.
Seto H.
Otake N.
J. Antibiot.
1985,
38:
799
5a
Umezawa I.
Funayama S.
Okada K.
Iwasaki K.
Satoh J.
Masuda K.
Komiyama K.
J. Antibiot.
1985,
38:
699
5b
Funayama S.
Okada K.
Komiyama K.
Umezawa I.
J. Antibiot.
1985,
38:
1107
5c
Funayama S.
Okada K.
Iwasaki K.
Komiyama K.
Umezawa I.
J. Antibiot.
1985,
38:
1677
5d
Nomoto H.
Katsumata S.
Takahashi K.
Funayama S.
Komiyama K.
Umezawa I.
Omura S.
J. Antibiot.
1989,
42:
479
6
Zhang H.-P.
Kakeya H.
Osada H.
Tetrahedron Lett.
1997,
38:
1789
7
Hosokawa N.
Naganawa H.
Iinuma H.
Hamada M.
Takeuchi T.
J. Antibiot.
1995,
48:
471
8
Smith AB.
Barbosa J.
Wong W.
Wood JL.
J. Am. Chem. Soc.
1996,
118:
8316
9a
Panek JS.
Masse CE.
J. Org. Chem.
1997,
62:
8290
9b
Masse CE.
Yang M.
Solomon J.
Panek JS.
J. Am. Chem. Soc.
1998,
120:
4123
10a
Smith AB.
Wan Z.
Org. Lett.
1999,
1:
1491
10b
Smith AB.
Wan Z.
J. Org. Chem.
2000,
65:
3738
11a
Schöning K.-U.
Hayashi RK.
Powell DR.
Kirschning A.
Tetrahedron: Asymmetry
1999,
10:
817
11b
Schöning K.-U.
Wittenberg R.
Kirschning A.
Synlett
1999,
1624
12 Aldehyde 10 was prepared by ozonolysis of TBS-protected (Z )-but-2-ene-1,4-diol, see: Keck GE.
Wager CA.
Wager TT.
Savin KA.
Covel JA.
McLaws MD.
Krishnamurthy D.
Cee VJ.
Angew. Chem. Int. Ed.
2001,
40:
231
13 Phosphonate 11 was prepared from dichloroethyl phosphonate (Scheme 9): Patois C.
Savignec P.
Synth. Commun.
1991,
21:
2391
14
Micalizio GC.
Schreiber SL.
Angew. Chem. Int. Ed.
2002,
41:
152
15
Nicolas E.
Russell KC.
Hruby VJ.
J. Org. Chem.
1993,
58:
766
16
Evans DA.
Fitch DM.
J. Org. Chem.
1997,
62:
454
17a
Holmquist CR.
Roskamp EJ.
J. Org. Chem.
1989,
54:
3258
17b
Rychnovsky SD.
Mickus DE.
J. Org. Chem.
1992,
57:
2732
18
Roush WR.
Palkowitz AD.
J. Org. Chem.
1989,
54:
3009
19
Evans DA.
Chapman KT.
Carreira EM.
J. Am. Chem. Soc.
1988,
110:
3560
20 One major problem that arose during the oxidative cleavage of the boronic ester was the formation of furan 45 which may have originated from over oxidation of diol 26 and formation of the aldehyde 44 (Scheme
[10 ]
). Lactol formation and elimination yields 45 . This side reaction was fully suppressed, if H2 O2 was slowly added to a well cooled solution of the boronate
21a
Hanessian S.
Lavallee P.
Can. J. Chem.
1975,
53:
2975
21b
Ogilvie KK.
Iwacha OJ.
Tetrahedron Lett.
1973,
14:
317
22
Nicolaou KC.
Webber SE.
Synthesis
1986,
453
23a
Dess DB.
Martin JC.
J. Org. Chem.
1983,
48:
4155
23b
Boeckman RK.
Shao P.
Mullins JJ.
Org. Synth.
Vol. 77:
John Wiley & Sons;
London:
1999.
p.141-146
24
Makin SM.
Telegina NI.
J. Gen. Chem. USSR
1962,
32:
1082
25
Janovskaya LA.
Rudenko BA.
Kucherov VF.
Stepanova RN.
Kogan GA.
Bull. Acad. USSR, Div. Chem. Sci.
1962,
2093
26a
de Koning H.
Subramanian-Erhart KEC.
Huisman HO.
Synth. Commun.
1973,
3:
25
26b
de Koning H.
Mallo GN.
Springer-Fidder A.
Subramanian-Erhart KEC.
Huisman HO.
Recl. Trav. Chim. Pays-Bas
1973,
683
27
Wenkert E.
Guo M.
Lavilla R.
Porter B.
Ramachandran K.
Sheu J.-H.
J. Org. Chem.
1990,
55:
6203
28 Among many different oxidation procedures tested, TPAP (cat.)/NMO was best suited for the oxidation of the highly unsaturated alcohol: Ley SV.
Normann J.
Griffith WP.
Marsden SP.
Synthesis
1994,
639
29a
Riediker M.
Duthaler RO.
Angew. Chem., Int. Ed. Engl.
1989,
28:
494
29b
Duthaler RO.
Herold P.
Lottenbach W.
Oertle K.
Riediker M.
Angew. Chem., Int. Ed. Engl.
1989,
28:
495
29c
Duthaler RO.
Hafner A.
Chem. Rev.
1992,
92:
807
29d
Duthaler RO.
Herold P.
Wyler-Helfer S.
Riediker M.
Helv. Chim. Acta
1990,
73:
659
30
Jaunzems J.
Kashin D.
Schönberger A.
Kirschning A.
Eur. J. Org. Chem.
2004,
3435
31 When other alcohols than allyl alcohol were employed we observed exchange of allyl in the alloc group by these alcohols.
32
Friedrich-Bochnitschek S.
Waldmann H.
Kunz H.
J. Org. Chem.
1989,
54:
751
33
Bald E.
Saigo K.
Mukaiyama M.
Chem. Lett.
1975,
1163
34
Martin SF.
Davidsen SK.
J. Am. Chem. Soc.
1984,
106:
6431
35a
Still WC.
Gennari C.
Tetrahedron Lett.
1983,
24:
4405
35b
Morimoto Y.
Matsuda F.
Shirahama H.
Tetrahedron
1996,
52:
10609
36
Dias LC.
Bau RZ.
de Sousa MA.
Zukerman-Schpector J.
Org. Lett.
2002,
4:
4325
37
Brown HC.
Racherla US.
Pellechia PJ.
J. Org. Chem.
1990,
55:
1868