RSS-Feed abonnieren
DOI: 10.1055/s-2007-1000840
Efficient Solvent-Free Synthesis of Homoallylic Alcohols Mediated by Zinc-Copper Couple
Publikationsverlauf
Publikationsdatum:
11. Dezember 2007 (online)

Abstract
Under solvent-free conditions, it was found that zinc-copper couple could efficiently mediate the Barbier-type reaction of ketones and allyl bromide to give the corresponding homoallylic alcohols in high to excellent yields at room temperature.
Key words
solvent-free - zinc-copper couple - ketones - allylation - homoallylic alcohols
-
1a
Romo D.Meyer SD.Johnson DD.Schreiber SL. J. Am. Chem. Soc. 1993, 115: 9345 -
1b
Nicolaou KC.Kim DW.Baati R. Angew. Chem. Int. Ed. 2002, 41: 3701 - 2
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 -
3a
Li CJ. Chem. Rev. 1993, 93: 2023 -
3b
Lubineau A.Auge J.Queneau Y. Synthesis 1994, 741 -
3c
Tan XH.Shen B.Liu L.Guo QX. Tetrahedron Lett. 2002, 43: 9373 -
4a
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; New York: 1997. -
4b
Li CJ.Chan TH. Organic Reactions in Aqueous Media John Wiley & Sons; New York: 1997. -
5a
Chan TH.Li CJ.Lee MC.Wei ZY. Can. J. Chem. 1994, 72: 1181 -
5b
Cintas P. Synlett 1995, 1087 -
5c
Chan TH.Yang Y. J. Am. Chem. Soc. 1999, 121: 3228 -
5d
Loh TP.Zhou JR.Yin Z. Org. Lett. 1999, 1: 1855 -
5e
Hilt G.Smolko KI.Waloch C. Tetrahedron Lett. 2002, 43: 1437 -
5f
Augé J.Lubin-Germain N.Marque S.Seghrouchn L. J. Organomet. Chem. 2003, 679: 79 -
6a
Li LH.Chan TH. Tetrahedron Lett. 2000, 41: 5009 -
6b
Wang W.Shi L.Huang Y. Tetrahedron 1990, 46: 3315 - 7
Zhou JY.Jia Y.Sun GF.Wu SH. Synth. Commun. 1997, 27: 899 -
8a
Li CJ.Meng Y.Yi XH.Ma JH.Chan TH. J. Org. Chem. 1998, 63: 7498 -
8b
Ren PD.Pan SF.Dong TW.Wu SH. Chin. J. Chem. 1996, 14: 462 - 9
Chan TC.Lau CP.Chan TH. Tetrahedron Lett. 2004, 45: 4189 - 10
Zhang WC.Li CJ. J. Org. Chem. 1999, 64: 3230 -
11a
Wang J.-X.Jia XF.Meng TJ.Xin L. Synthesis 2005, 2838 -
11b
Marton D.Stivanello D.Tagliavini G. J. Org. Chem. 1996, 61: 2731 -
11c
Yi XH.Haberman JX.Li CJ. Synth. Commun. 1998, 28: 2999 -
11d
Zhou CL.Zhou YQ.Jiang JY. Tetrahedron Lett. 2004, 45: 5537 -
12a
Mukaiyama T.Harada T. Chem. Lett. 1981, 10: 1527 -
12b
Wang ZY.Zha ZG.Zhou CL. Org. Lett. 2002, 4: 1683 -
12c
Chan TH.Yang Y.Li CJ. J. Org. Chem. 1999, 64: 4452 -
12d
Tan XH.Hou YQ.Huang C.Liu L.Guo QX. Tetrahedron 2004, 60: 6129 -
12e
Tang L.Ding L.Chang WX.Li J. Tetrahedron Lett. 2006, 47: 303 -
12f
Wang J.Yuan G.Dong C.-Q. Chem. Lett. 2004, 33: 286 -
12g
Andrews PC.Peatt AC.Raston CL. Tetrahedron Lett. 2002, 43: 7541 -
13a
Wang ZY.Yuan SZ.Zha ZG.Zhang ZD. Chin. J. Chem. 2003, 21: 1231 -
13b
Andrews PC.Peatt AC.Raston CL. Tetrahedron Lett. 2004, 45: 243 -
13c
Wang ZY.Yuan SZ.Li CJ. Tetrahedron Lett. 2002, 43: 5097 - 14
Chan TH.Yang Y. Tetrahedron Lett. 1999, 40: 3863 - 15
Loh TP.Xu J. Tetrahedron Lett. 1999, 40: 2431 -
16a
Tanaka K. Solvent-Free Organic Synthesis Wiley-VCH; Weinheim: 2003. -
16b
Astruc D.Heuzé K.Gatard S.Méry D.Nlate S.Plault L. Adv. Synth. Catal. 2005, 347: 329 -
16c
Cave GWV.Raston CL.Scott JL. Chem. Commun. 2001, 2159 -
16d
Mestres R. Green Chem. 2004, 6: 853 -
16e
Cole-Hamilton DJ. Science 2003, 299: 1072 - 17
Hamasaki R.Chounan Y.Horino H.Yamamoto Y. Tetrahedron Lett. 2000, 41: 9883 -
18a
Wang J.-X.Fu Y.Hu YL. Angew. Chem. Int. Ed. 2002, 41: 2757 -
18b
Wang J.-X.Fu Y.Hu YL.Wang KH. Synthesis 2003, 1506 -
18c
Hu YL.Wang J.-X.Li WB. Chem. Lett. 2001, 30: 174 -
18d
Wang J.-X.Wang KH.Zhao LB.Li HX.Fu Y.Hu YL. Adv. Synth. Catal. 2006, 348: 1262 -
18e
Huang DF.Wang J.-X. Synlett 2007, 2272 -
19a
Hennion GF.Sheehan JJ. J. Am. Chem. Soc. 1949, 71: 1964 -
19b
Shank RS.Shechter H. J. Org. Chem. 1959, 24: 1825 -
19c
LeGoff E. J. Org. Chem. 1964, 29: 2048 -
19d
Suarez RM.Sestelo JP.Sarandeses LA. Synlett 2002, 1435 -
19e
Shimizu M.Iwata A.Makino H. Synlett 2002, 1538 -
19f
Estevam IHS.Bieber LW. Tetrahedron Lett. 2003, 44: 667
References and Notes
Preparation of the Zinc-Copper Couple: Zinc powder (11.6 g) and distilled H2O (80 mL) were placed into a 100-mL round-bottom flask equipped with a stir bar. With stirring, HCl acid (37%, 2 × 1 mL) was added over 10 min. Then the CuSO4 solution (20%, 20 mL) was added dropwise with stirring and the stirring was continued for about 15 min. Finally, the mixture was filtered and the solid was washed with H2O (3 × 30 mL), acetone (3 × 10 mL), and Et2O (2 × 10 mL). Then the solid was transferred into a flask equipped with vacuum take-off and dried under vacuum for 3 h at 100 °C. Other M-Cu couples were also prepared in this way.Preparation of the Homoallylic Alcohols: Zinc-copper couple (0.24 g), allyl bromide (2.5 mmol) and ketones (2 mmol) were placed in a dried round-bottom flask, and the mixture was stirred at r.t. and the reaction was monitored by TLC. After reaction completed, sat. brine (10 mL) was poured into the mixture, the mixture was extracted with Et2O (3 × 10 mL) and the organic layer was separated, dried over anhyd MgSO4, filtered, and evaporated. The pure products were obtained by flash chromatography over silica gel, and characterized by IR, 1H NMR, 13C NMR and MS.
21Representative Spectroscopic Data for Compounds 3. Compound 3i: IR: 3475, 2976, 1670, 1456, 1269, 1101, 920, 771, 738 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.24-7.84 (m, 7 H), 5.60-5.70 (m, 1 H), 5.09-5.19 (m, 2 H), 3.88 (q, J = 6.4 Hz, 2 H), 2.65-2.76 (m, 1 H), 2.52-2.63 (m, 1 H), 2.14 (s, 1 H), 1.61 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 146.4, 143.3, 143.3, 141.4, 140.2, 133.7, 126.7, 126.5, 125.0, 123.4, 121.5, 119.8, 119.4, 73.8, 48.6, 37.0, 30.1, 26.8. EI-MS: m/z (%) = 250 (2.4) [M+], 209 (64.9), 193 (16.8), 165 (37.7), 43 (100), 39 (17.2). Anal. Calcd for C18H18O: C, 86.36; H, 7.25. Found: C, 86.36; H, 7.36. Compound 3p: IR: 3406, 3077, 2977, 1644, 1439, 1372, 1114, 923, 796 cm-1. 1H NMR (400 MHz, CDCl3): δ = 6.88 (d, J = 3.6 Hz, 1 H), 6.63 (d, J = 3.6 Hz, 1 H), 5.67-5.78 (m, 1 H), 5.12-5.19 (m, 2 H), 2.57-2.67 (m, 1 H), 2.48-2.54 (m, 1 H), 2.34 (s, 1 H), 1.57 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 154.6, 132.8, 129.5, 122.5, 120.2, 110.5, 73.0, 48.7, 30.1. EI-MS: m/z (%) = 248 (0.3) [M+ + 2], 246 (0.2) [M+], 231 (0.3) [M+ - Me], 229 (0.3) [M+ - OH], 207 (33.7), 43 (100), 39 (21.7). Anal. Calcd for C9H11BrOS: C, 43.74; H, 4.49. Found: C, 43.29; H, 3.93. Compound 3q: IR: 3439, 3072, 2922, 1662, 1445, 1369, 1142, 917, 829 cm-1. 1H NMR (400 MHz, CDCl3): δ = 6.54 (s, 1 H), 5.67-5.78 (m, 1 H), 5.12-5.17 (m, 2 H), 2.15-2.50 (m, 8 H), 2.04 (s, 1 H), 1.51 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 142.1, 134.2, 133.9, 131.3, 125.3, 119.2, 73.6, 47.7, 30.9, 29.3, 15.0. EI-MS: m/z (%) = 196 (2.37) [M+], 181 (0.04) [M+ - OH], 155 (24.9), 139 (10.5), 113 (5.7), 59 (9.3), 43 (100), 41 (16.2), 39 (16.9). Anal. Calcd for C11H16OS: C, 67.30; H, 8.22. Found: C, 66.92; H, 8.07. Compound 3r: IR: 3411, 3077, 2981, 1684, 1373, 1097, 921, 786 cm-1. 1H NMR (400 MHz, CDCl3): δ = 6.05 (s, 1 H), 5.87 (s, 1 H), 5.68-5.72 (m, 1 H), 5.11-5.15 (m, 2 H), 2.64-2.69 (m, 1 H), 2.51-2.56 (m, 1 H), 2.28 (s, 3 H), 2.14 (s, 1 H), 1.51 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 157.3, 151.2, 133.5, 119.0, 105.8, 105.3, 70.5, 46.0, 26.3, 13.5. EI-MS: m/z (%) = 166 (0.7) [M+], 149 (1.7) [M+ - OH], 135 (0.7), 125 (91.5), 109 (10.3), 95 (2.1), 43 (100), 39 (20.6). Anal. Calcd for C10H14O2: C, 72.26; H, 8.49. Found: C, 72.28; H, 8.64.