Subscribe to RSS
DOI: 10.1055/s-2007-1072749
CAN-Mediated Oxidation of Electron-Deficient Aryl and Heteroaryl Hydrazines and Hydrazides
Publication History
Publication Date:
07 May 2008 (online)
Abstract
Aryl and heteroaryl hydrazines and hydrazides were successfully oxidised using CAN, deriving dehydrazinated products. The reaction pathway strongly depends on the nature of the substrate, resulting in the formation of hydrocarbons or alkoxy derivatives. When deuterated solvents such as methanol-d 4 or acetonitrile-d 3 were used, a regiospecific incorporation of deuterium was achieved.
Key words
deuteration - CAN - oxidation - hydrazines - hydrazides
- 1
Marrocco M.Brilmyer G. J. Org. Chem. 1983, 48: 1487 - For reviews, see:
-
2a
Nair V.Deepthi A. Chem. Rev. 2007, 107: 1862 -
2b
Tse-Loh H. In Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing AgentsBurke SD.Danheiser RL. John Wiley & Sons; Chichester: 2005. p.77-80 - 3 Š
tefane B.Kočevar M.Polanc S. Tetrahedron Lett. 1999, 40: 4429 - For reviews, see:
-
4a
Maulide N.Vanherck J.-C.Gautier A.Markó IE. Acc. Chem. Res. 2007, 40: 381 -
4b
Nair V.Panicker SB.Nair LG.George TG.Augustine A. Synlett 2003, 156 - 5
Hoffman RV.Kumar A. J. Org. Chem. 1984, 49: 4014 - 6
Itoh T.Matsuya Y.Nagata K.Ohsawa A. Tetrahedron Lett. 1997, 38: 4177 -
7a
Doyle MP.Siegfried B.Fobare WF. Tetrahedron Lett. 1977, 2655 -
7b
Varea T.González-Núńez ME.Rodrigo-Chiner J. Tetrahedron 1989, 30: 4708 -
8a
Millington CR.Quarrell R.Lowe G. Tetrahedron 1998, 39: 7201 -
8b
Stieber F.Grether U.Waldmann H. Angew. Chem. Int. Ed. 1999, 38: 1073 -
8c
Müller GH.Waldmann H. Tetrahedron Lett. 1999, 40: 3549 -
8d
Stieber F.Grether U.Waldmann H. Chem. Eur. J. 2003, 9: 3270 -
8e
Stieber F.Grether U.Mazitschek R.Soric N.Giannis A.Waldmann H. Chem. Eur. J. 2003, 9: 3282 - 10
Baciocchi E.Mei S.Rol C. J. Org. Chem. 1978, 43: 2919 - 12
Bernard MK.Makosza M.Szafran B.Wrzeciono U. Liebigs Ann. Chem. 1989, 545 - 13
Kobe J.Stanovnik B.Tiler M. Tetrahedron 1968, 24: 239 - 14
Wentrup C.Crow WD. Tetrahedron 1970, 26: 4915 - 16
Košmrlj J.Kočevar M.Polanc S. J. Chem. Soc., Perkin Trans. 1 1998, 3917 - 17
Huang PC.Kosower EM. J. Am. Chem. Soc. 1968, 90: 2354 - 18
Nonhebel DC.Walton JC. Free Radical Chemistry Cambridge University Press; Cambridge: 1974. p.25 -
19a
Tschirret-Guth RA.Ortiz de Montellano PR. J. Org. Chem. 1998, 63: 9711 -
19b
Bergmann H.Strumpf T.Lyr H. Pestic. Sci. 1988, 23: 141 - 20
Forchiassin M.Risalti A.Russo C. Tetrahedron 1981, 37: 2921 - 22
Dimroth K.Tüncher W. Synthesis 1977, 339 -
23a
Mencarelli P.Stegel F. J. Org. Chem. 1985, 50: 5415 -
23b
Higashino T.Uchida M.Hayashi E. Chem. Pharm. Bull. 1972, 20: 772 - 24
Kočevar M.Mihorko P.Polanc S. J. Org. Chem. 1995, 60: 1466 - 25
Gozzo FC.Eberlin MN. J. Org. Chem. 1999, 64: 2188
References and Notes
The products were analysed using MS spectrometry.
11
Typical Procedure: To a solution of CAN (2.193 g, 4 mmol) and 1,2-dibromotetrachloroethane (1.302 g, 4 mmol) in MeOH (5 mL) was added 2,4-dinitrophenylhydrazine (198 mg, 1 mmol) in one portion. The reaction mixture was stirred at r.t. for an additional 5 min, evaporated to dryness below 40 °C, treated with H2O (10 mL) and extracted with CH2Cl2 (5 × 10 mL). The organic phase was dried over anhyd Na2SO4 and concentrated under reduced pressure to give a mixture of products (2a:3Br:3Cl = 50:7.5:1). The mixture was purified by column chromatography (SiO2, EtOAc-light petroleum, 1:10). 2a: orange solid (134 mg, 80%); R
f
(light petroleum-EtOAc, 3:1) 0.34. 1H NMR (300 MHz, CDCl3): δ = 7.87 (t, J = 8.0 Hz, 1 H), 8.60 (dd, J = 2.0, 8.0 Hz, 2 H), 9.08 (t, J = 2.0 Hz, 1 H). 3Br: yellow oil (24 mg, 10%); R
f
(light petroleum-EtOAc, 3:1) 0.44. 1H NMR (300 MHz, CDCl3): δ = 8.04 (d, J = 9.0 Hz, 1 H), 8.32 (dd,
J = 2.5, 9.0 Hz, 1 H), 8.70 (d, J = 2.5 Hz, 1 H). 3Cl: yellow oil (2 mg, 1%); R
f
(light petroleum-EtOAc, 3:1) 0.64. 1H NMR (300 MHz, CDCl3): δ = 7.86 (d, J = 9.0 Hz, 1 H), 8.43 (dd, J = 5.5, 9.0 Hz, 1 H), 8.76 (d, J = 2.5 Hz, 1 H).
General Procedure for the Oxidation of Hydrazines and Hydrazides: The hydrazine or hydrazide (1 mmol) was added at r.t. within a period of 10-15 min to a solution of CAN (4 mmol) in MeOH (5 mL). The reaction mixture was stirred at r.t. for an additional 10-40 min, evaporated to dryness below 40 °C, treated with H2O (10 mL) and neutralised with NaHCO3 (pH ca. 7). After extraction with CH2Cl2 (5 × 10 mL), the organic phase was dried over anhyd Na2SO4 and concentrated under reduced pressure to give dehydrazinated products 2. If necessary the products were purified by column chromatography on SiO2. Products 2a-f, 8a and 8b were compared with the authentic samples. 2g: yellow solid; R
f
(light petroleum-EtOAc, 5:3) 0.43; mp 69-72 °C (MeCN). IR (KBr): 3119, 1543, 1517, 1471, 1442, 1371, 1341, 1167, 1066, 1004, 849, 836, 762, 606, 566
cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.53 (s, 3 H), 3.87 (s, 3 H), 8.08 (s, 1 H). 2h: white solid; R
f
(CH2Cl2-MeOH, 10:1) 0.39; mp 47-50 °C (light petroleum-EtOAc). IR (KBr): 3121, 3105, 1619, 1531, 1475, 1345, 1298, 1271, 1144, 1024, 928, 872, 797, 756, 635, 571 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.02 (dd, J = 4.0, 9.0 Hz, 1 H), 7.78 (d,
J = 1.0 Hz, 1 H), 7.96 (dd, J = 1.0, 9.0 Hz, 1 H), 7.98-7.99 (m, 1 H), 8.30 (dd, J = 1.0, 9.0 Hz, 1 H). 2i: white solid; R
f
(CH2Cl2-MeOH, 10:1) 0.40; mp 98-102 °C (light petroleum-EtOAc). IR (KBr): 3096, 1614, 1541, 1419, 1370, 1348, 1327, 1255, 1130, 1087, 1011, 810, 764 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.57 (dd, J = 4.0, 9.5 Hz, 1 H), 8.46 (dd, J = 1.5, 9.5 Hz, 1 H), 8.72 (dd, 1 H). 7a: yellow oil; R
f
(light petroleum-EtOAc, 5:3) 0.25. IR (KBr): 2949, 1618, 1574, 1500, 1447, 1371, 1098, 976, 875, 771 cm-1. 1H NMR (300 MHz, CDCl3): δ = 4.17 (s, 3 H), 7.54 (ddd, J = 1.0, 7.0, 8.0 Hz, 1 H), 7.81 (ddd, J = 1.5, 7.0, 8.5 Hz, 1 H), 7.92 (ddd, J = 1.0, 1.0, 8.5 Hz, 1 H), 8.14 (ddd, J = 1.0, 1.5, 8.0 Hz, 1 H), 8.80 (s, 1 H). MS (CI): m/z (%) = 160 (100) [M+], 131 (40), 103 (95). 7b: yellow oil; R
f
(CH2Cl2-MeOH, 10:1) 0.40. IR (KBr): 2946, 1561, 1493, 1462, 1367, 1122, 832 cm-1. 1H NMR (300 MHz, CDCl3): δ = 4.29 (s, 3 H), 7.78 (dd, J = 4.0, 8.5 Hz, 1 H), 8.28 (dd, J = 1.5, 8.5 Hz, 1 H), 8.87 (s, 1 H), 8.99 (dd, J = 1.5, 4.0 Hz, 1 H). MS (EI, 70 eV): m/z (%) = 161 (100) [M+], 104 (98), 77 (40). HRMS (EI): m/z calcd for C8H7N3O: 161.0589; found: 161.0590.
Representative Procedure for the Oxidation of Aryl Hydrazinecarboxylates 4a-c: An aryl hydrazine-
carboxylate (1 mmol) was added at r.t. in one portion to a solution of CAN (2.1 mmol) in MeOH (5 mL). The reaction mixture was stirred at r.t. for an additional 5 min, evaporated to dryness below 40 °C, treated with H2O (10 mL) and extracted with CH2Cl2 (5 × 10 mL). The organic phase was dried over anhyd Na2SO4 and concentrated under reduced pressure to give the pure products 5a-c. 5a: ref. 19. 5b: orange oil (213 mg, 94%); R
f
(light petroleum-EtOAc, 3:1) 0.59. IR (NaCl): 2985, 1758, 1572, 1503, 1389, 1368, 1296, 1245, 1211, 1165, 1029, 977, 889, 863, 826, 748 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.48 (t, J = 7.0 Hz, 3 H), 2.48 (s, 3 H), 4.53 (q, J = 7.0 Hz, 2 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.79 (dd, J = 2.0, 8.0 Hz, 1 H), 7.93 (d, J = 2.0 Hz, 1 H). 13C NMR (75.5 MHz, CDCl3): δ = 14.0, 20.2, 64.3, 122.90, 122.95, 131.3, 135.3, 142.3, 150.4, 161.8. MS (CI): m/z
(%) = 225 (85) [M + 2]+, 178 (50), 150 (55), 122 (100). HRMS (EI): m/z calcd for C9H11N3O4: 225.0750; found: 225.0759. 5c: orange oil (176 mg, 73%); R
f
(light petroleum-EtOAc, 5:1) 0.14. IR (NaCl): 2938, 1762, 1544, 1514, 1446, 1359, 1235 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.49 (t, J = 7.0 Hz, 3 H), 2.54 (s, 3 H), 4.05 (s, 3 H), 4.55 (q, J = 7.0 Hz, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 13.2, 14.1, 38.8, 65.3, 144.1, 146.2, 160.7, 171.1. MS (CI): m/z (%) = 243 (8) [M + 2]+, 125 (14), 67 (100). HRMS (EI): m/z calcd for C8H13N5O4: 243.0968; found: 243.00968.