References and Notes
1
Cashman DJ.
Kellogg GE.
J. Med. Chem.
2004,
47:
1360
2
Gewirtz DA.
Biochem.
Pharmacol.
1999,
57:
727
3a
Minotti G.
Menna P.
Salvatorelli E.
Cairo G.
Gianni L.
Pharmacol. Rev.
2004,
56:
185
3b
Taatjes DJ.
Koch TH.
Curr.
Med. Chem.
2001,
8:
15
For reviews on the medicinal chemistry
of azaanthra-quinones, see:
4a
Krapcho AP.
Maresch MJ.
Hacker MP.
Hazelhurst L.
Menta E.
Oliva A.
Spinelli S.
Beggiolin G.
Giuliani FG.
Pezzoni G.
Tognella S.
Curr. Med. Chem.
1995,
2:
803
4b
Sissi C.
Palumbo C.
Curr. Top. Med. Chem.
2004,
4:
219
5
Borchmann P.
Reiser M.
IDrugs
2003,
6:
486
6a
Garbett NC.
Graves DE.
Curr. Med. Chem.: Anti-Cancer Agents
2004,
4:
149
6b
Stiborová M.
Sejbal J.
Borek-Dohalská L.
Aimová D.
Poljaková J.
Forsterová K.
Rupertová M.
Wiesner J.
Husecek J.
Wiessler M.
Frei E.
Cancer Res.
2004,
64:
8374
7a
Chen X.
Smith GD.
Waring PW.
J. Appl. Phycol.
2003,
15:
269
7b
Bernardo PH.
Chai CLL.
Heath GA.
Mahon PJ.
Smith GD.
Waring P.
Wilkes BA.
J. Med.
Chem.
2004,
47:
4958
8a
Rickards RW.
Rothschild JM.
Willis AJ.
de Chazal NM.
Kirk J.
Kirk K.
Saliba KJ.
Smith GD.
Tetrahedron
1999,
55:
13513
8b
Doan NT.
Rickards RW.
Rothschild JM.
Smith GD.
J.
Appl. Phycol.
2000,
12:
409
8c
Doan NT.
Stewart PR.
Smith GD.
FEMS Microbiol. Lett.
2001,
196:
135
For a review, see:
9a
Avendaño C.
Menéndez JC.
Recent Res.
Devel. Org. Chem.
1998,
2:
69
For selected additional work, see:
9b
Pérez JM.
López-Alvarado P.
Alonso MA.
Avendaño C.
Menéndez JC.
Tetrahedron
Lett.
1996,
37:
6955
9c
Pérez JM.
Avendaño C.
Menéndez JC.
Tetrahedron
Lett.
1997,
38:
4717
9d
Pascual-Alfonso E.
Avendaño C.
Menéndez JC.
Synlett
2000,
205
9e
Pérez JM.
López-Alvarado P.
Avendaño C.
Menéndez JC.
Tetrahedron
2000,
56:
1561
9f
Alonso MA.
López-Alvarado P.
Avendaño C.
Menéndez JC.
Tetrahedron
2003,
59:
2821
9g
Sánchez JD.
Cledera P.
Perumal S.
Avendaño C.
Menéndez JC.
Synlett
2007,
2805
10
Bartoli G.
Bosco M.
Cantagalli G.
Dalpozzo R.
J. Chem. Soc., Perkin
Trans. 2
1985,
773
11
Avendaño C.
de la Cuesta E.
Gesto C.
Synthesis
1991,
727
12
Representative
Procedure
To a solution of 1,4-dimethyl-5,8-dimethoxy-6-nitro-2 (1H)-quinolin-2-one (1 g, 3.59 mmol) was
added p-tolylmagnesium bromide (10.8
mL of a 1 M soln in THF, 10.8 mmol). The reaction mixture was stirred
at -48 ˚C for 1 h and poured onto a sat.
aq soln of NH4Cl (15 mL), which was extracted with EtOAc
(3 × 20 mL). The combined organic layers
were washed with brine (2 × 15 mL), dried over
Na2SO4, and evaporated. Chromatography of
the residue on silica gel, eluting with a PE-EtOAc gradient, gave
534 mg (44%) of 1,4-dimethyl-5,8-dimethoxy-6-(p-tolylamino)-2 (1H)-quinolin-2-one
(5c), as a pale brown oil, and 218 mg (18%)
of 1,4-dimethyl-8-methoxy-6-nitro-5-(p-tolyl)-2
(1H)-quinolin-2-one (6c),
as a pale brown solid.
5c: IR
(KBr): 3365, 2922, 1646, 1599, 1516, 1455 cm-¹. ¹H NMR
(250 MHz, CDCl3): δ = 7.12 (d, 2 H, J = 8.3 Hz,
H-2′, H-5′), 7.06 (s, 1 H, H-7), 7.01 (d, 2 H, J = 8.3 Hz,
H-3′, H-5′), 6.50 (d, 1 H, J = 1.0
Hz, H-3), 5.98 (br s, 1 H, NH), 3.81 (s, 3 H, NCH3),
3.75 (s, 3 H, C5-OCH3), 3.67 (s, 3 H, C8-CH3),
2.60 (d, 3 H, J = 1.0
Hz, C4-CH3), 2.31 (s, 3 H, C4′-CH3)
ppm. ¹³C NMR (62.9 MHz, CDCl3): δ = 163.18
(CO), 145.95 (C-1′), 145.93 (C-4), 141.15 (C-8), 140.71
(C-5), 131.31 (C-6), 130.48 (C-3′, C-5′), 127.15
(C-4′), 123.82 (C-3), 118.74 (C-2′, C-6′),
118.63 (C-4a), 113.15 (C-8a), 105.93 (C-7), 61.93 (C5-OCH3),
57.48 (C8-OCH3), 36.39 (NCH3), 23.68 (C4-CH3),
21,08 (C4′-Me) ppm. Anal. Calcd for: C, 70.99; H, 6.55;
N, 8.28. Found: C, 69.83; H, 6.53; N, 7.95.
6c:
Mp 181-183 ˚C. IR (KBr): 3141, 1665,
1607, 1567, 1522 cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 7.36 (s,
1 H, H-7), 7.18-7.14 (m, 4 H, H-2′, H-3′,
H-5′, H-6′), 6.52 (d, 1 H, J = 0.9
Hz, H-3), 3.99 (s, 3 H, OCH3), 3.85 (s, 3 H, NCH3), 2.41
(s, 3 H, C4′-CH3), 1.63 (d, 3 H, J = 0.9 Hz,
C4-CH3) ppm. ¹³C NMR (62.9
MHz, CDCl3): δ = 162.87 (CO), 148.43
(C-8), 148.27 (C-4), 139.17 (C-6), 136.17 (C-4 ′), 133.17
(C-1′), 130.48 (C-3′, C-5′), 129.30 (C-2′,
C-6′), 127.00 (C-8a), 125.66 (C-3), 124.10 (C-5), 123.20
(C-4a), 106.84 (C-7), 57.03 (OCH3), 37.28 (NCH3),
24.99 (C4-CH3), 21,80 (C4′-CH3) ppm.
Anal. Calcd for C19H18N2O4:
C, 67.44; H, 5.36; N, 8.28. Found: C, 67.83; H, 5.53; N, 7.95.
For an overview of methods for
diarylamine synthesis, see:
13a
Sapountzis I.
Knochel P.
Angew. Chem. Int. Ed.
2004,
43:
897
For some more recent methods, see:
13b
Ballini R.
Barboni L.
Femoni C.
Giarlo G.
Palmieri A.
Tetrahedron
Lett.
2006,
47:
2295
13c
Sridharan V.
Karthikeyan K.
Muthusubramanian S.
Tetrahedron
Lett.
2006,
47:
4221
14a
Sapountizis I.
Knochel P.
J.
Am. Chem. Soc.
2002,
124:
9390
14b For a short review of
the reactions between Grignard reagents and nitroarenes, see: Ricci A.
Fochi M.
Angew. Chem.
Int. Ed.
2003,
42:
1444
15
Bartoli G.
Acc.
Chem. Res.
1984,
17:
109
16a
Li JJ.
Gribble GW.
Palladium
in Heterocyclic Chemistry
Vol. 20:
Tetrahedron
Organic Chemistry Series, Pergamon;
New York:
2000.
Chap.
1 and 3.
16b
Knölker H.-J.
Reddy KR.
Chem.
Rev.
2002,
102:
4303
17
Representative
Procedure
A solution of compound 5a (120
mg, 0.37 mmol) and Pd(OAc)2 (166 mg, 0.74 mmol) in AcOH
(15 mL) was heated at 120 ˚C for 16 h, under an
argon atmosphere. The reaction mixture was evaporated to dryness
and the residue was chromatographed on silica gel, eluting with
an EtOAc-PE gradient, to give 29 mg (25%) of 5,11-dimethoxy-1,4-dimethyl-1H-pyrido[3,2-b]carbazol-2
(6H)-one (7a),
as an orange solid, and 64 mg (59%) of 1,4-dimethyl-1H-pyrido[3,2-b]carbazole-2,5,11
(6H)-trione (8a),
as a red solid.
7a: Mp 270-272 ˚C.
IR (KBr): 3202, 2930, 1635, 1587, 1550, 1484, 1437, 1230 cm-¹. ¹H
NMR (250 MHz, DMSO-d
6): δ = 8.36
(s, 1 H, NH), 7.96 (d, 1 H, J = 7.9
Hz, H-10), 7.51-7.57 (m, 2 H, H-7 and H-9), 7.40-7.26
(m, 1 H, H-8), 6.54 (s, 1 H, H-3), 3.99 (s, 6 H, 2 OMe), 3.85 (s,
3 H, N1-Me), 2.73 (s, 3 H, C4-Me) ppm. ¹³C
NMR (62.9 MHz, CDCl3): δ = 160.56 (C-2),
146.25 (C-4), 140.28 (C-11), 139.12 (C-5), 130.72 (C-6a), 128.92
(C-10a), 127.79 (C-5a), 124.02 (C-9), 122.52 (C-10), 122.29 (C-8),
120.91 (C-3), 120.63 (C-11a), 116.49 (C-7), 111.25 (C-10b), 62.35
(C5-OCH3), 61.81 (C11-OCH3), 36.08 (NCH3),
23.72 (C4-CH3) ppm. Anal. Calcd for C19H18N2O3:
C, 70.79; H, 5.63; N, 8.69. Found: C, 70.70; H, 5.71; N, 8.50.
8a: Mp >300 ˚C.
IR (KBr): 3424, 2941, 1647, 1575, 1542, 1484 cm-¹. ¹H
NMR (250 MHz, DMSO-d
6): δ = 12.94
(br s, 1 H, N6-H), 8.06 (d, 1 H, J = 7.5
Hz, H-10), 7.56 (d, 1 H, J = 7.5
Hz, H-7), 7.40-7.30 (m, 2 H, H-8, H-9), 6.58 (s, 1 H, H-3),
3.84 (s, 3 H, N1-CH3), 2.56 (s, 3 H, C4-Me) ppm. ¹³C NMR
(62.9 MHz, CDCl3): δ = 178.01 (C-11),
177.33 (C-5), 161.37 (C-2), 149.13 (C-4), 145.89 (C-6a), 137.78
(C-10a), 136.24 (C-5a), 126,43 (C-10a), 123.99 (C-4a), 123.67 (C-9), 122.42
(C-10), 121.81 (C-8), 116.04 (C-3), 114.87 (C-10b), 113.87 (C-7),
30.68 (NCH3), 22.59 (C4-CH3) ppm. MS:
m/z = 292 [M+],
263, 169, 44. Anal. Calcd for C17H12N2O3: C,
69.86; H, 4.14; N, 9.58. Found: C, 69.53; H, 3.97; N, 9.24.
For some recent examples of this
transformation, see:
18a
Pérez JM.
López-Alvarado P.
Avendaño C.
Menéndez JC.
Tetrahedron Lett.
1998,
39:
673
18b
De la Fuente JA.
Martín MJ.
Blanco MM.
Pascual-Alfonso E.
Avendaño C.
Menéndez JC.
Bioorg. Med. Chem.
2001,
9:
1807
19 For a review of transition-metal-catalyzed
oxidative functionalization of carbon-hydrogen bonds, see: Dick AR.
Sanford MS.
Tetrahedron
2006,
62:
2439
For reviews of some aspects of
oxidations catalyzed by palladium(II) species, see.
20a
Muzart J.
Tetrahedron
2003,
59:
5789
20b
Stahl SS.
Angew. Chem. Int. Ed.
2004,
43:
3400
20c
Sigman MS.
Schultz MJ.
Org.
Biomol. Chem.
2004,
2:
2551
21 For a recent summary of the synthetic
applications of palladium acetate, see: Vats RK.
Synlett
2006,
329
22
Tanoue Y.
Terada A.
Bull. Chem. Soc. Jpn.
1988,
61:
2039
23 For mechanistic discussions involving
palladium enolate complexes, see: Culkin DA.
Hartwig JF.
Acc. Chem. Res.
2003,
36:
234