Abstract
Cross-pin fixation of the bone-patellar tendon-bone (BTPB) graft in anterior crucial ligament (ACL) reconstruction using biointegrable CB pins derived from bovine compact bone is a novel and biological fixation method. With the cross-pin fixation, graft fixation can be performed either using two 3-mm diameter CB pins (CB 3 pins) applied across the bone plugs (transcross technique) or one 5-mm diameter CB pin (CB 5 pin) applied across the patellar tendon directly in front of the bone plugs (frontcross technique). No biomechanical data exist for these two cross-pin procedures. A 10-mm wide BPTB graft and the proximal tibia were harvested from 20 fresh pairs of porcine specimens. Transcross fixation (TCP group) and frontcross fixation (FCP group) were performed for fixation of the tibial bone plug inside the tibial tunnel. On 15 specimens in each group, the ultimate failure load was determined by means of single load failure applied parallel to the long tunnel axis. On 5 specimens in each group, bone plug displacement was determined under 1000 load cycles from 50 N to 360 N. The tibial TCP fixation of the BPTB graft using two CB 3 pins demonstrated a maximum failure strength similar to that reported for tibial bioabsorbable interference screw fixation in porcine specimens. The FCP fixation using one CB 5 pin showed a significantly higher value. The recorded bone plug displacements under cyclic loads were minimal and reversible.
Key words
Cross-pin fixation - CB pins - BPTB graft - ACL reconstruction
References
1
Abate L A, Fadale P D, Hulstyn M J, Walsh W R.
Initial fixation strength of polylactic acid interference screws in anterior cruciate ligament reconstruction.
Arthroscopy.
1998;
14
278-284
2
Adam F, Pape D, Steimer O, Kohn D, Rupp S.
Biomechanical properties of patellar and hamstring graft fixation for anterior cruciate ligament reconstruction using an interference screw. Experimental study with roentgen stereometric analysis (RSA).
Der Orthopäde.
2001;
30
649-657
3
Aune A, Ekeland A, Cawley P.
Interference screw fixation of hamstring vs patellar tendon grafts for anterior cruciate ligament reconstruction.
Knee Surg Sports Traumatol Arthrosc.
1998;
6
99-102
4
Bach Jr B R.
Pitfalls in the use on interference screws for anterior cruciate ligament reconstruction. A brief report.
Arthroscopy.
1989;
5
225-226
5
Berg E E.
Autograft bone-patella tendon-bone plug comminution with loss of ligament fixation and stability.
Arthroscopy.
1996;
12
232-235
6
Beynnon B D, Amis A.
In vitro testing protocols for the cruciate ligaments and ligament reconstructions.
Knee Surg Sports Traumatol Arthrosc.
1998;
6 (Suppl. 1)
70-76
7
Boccafoschi F, Bosetti M, Cannas M.
Evaluation of bioresorbable implants from bovine bone: in vitro preliminary observations.
J Appl Biomaterials - Biomechanics.
2005;
3
35-41
8
Boszotta H, Anderl W.
Primary stability with tibial press-fit of patellar ligament graft. An experimental study on bovine knees.
Arthroscopy.
2001;
17
963-970
9
Böstman O, Pihlajamäki H.
Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review.
Biomaterials.
2000;
21
2615-2621
10
Brand J, Weiler A, Caborn D, Brown C, Johnson D.
Graft fixation in cruciate ligament reconstruction.
Am J Sports Med.
2000;
28
761-774
11
Brown G A, Pena F, Grontvedt T. et al .
Fixation strength of interference screw fixation in bovine, young human and elderly human cadaver knees: Influence of insertion torque, tunnel-bone block gap and interference.
Knee Surg Sports Traumatol Arthrosc.
1996;
3
238-244
12
Clancy W G, Narechania R G, Rosenberg T D, Gmeiner J G, Wisnefske D D, Lange T A.
Anterior and posterior cruciate ligament reconstruction in rhesus monkeys.
J Bone Joint Surg [Am].
1981;
63
1270-1284
13
Corsetti J R, Jackson D W.
Failure of anterior cruciate ligament reconstruction: The biologic basis.
Ciln Orthop.
1996;
325
42-49
14
Günther K P, Scharf H P, Pesch H J, Puhl W.
Osteointegration of solvent preserved bone transplants in an animal model.
Osteologie.
1996;
5
4-12
15
Hofmann A, Hofmann C, Gotzen L.
The influence of different desinfection and sterilisation procedures on osteoblastic function.
Unfallchirurg.
2000;
103
380-388
16
Johnson L L, van Dyk G E.
Metal and bioabsorbable interference screws: Comparison of failure strength.
Arthroscopy.
1996;
12
452-456
17
Jomba N M, Raso V J, Leung P.
Effect of varying angles on the pullout strength of interference screw fixation.
Arthroscopy.
1993;
9
580-583
18
Kohn D, Rose C.
Primary stability of interference screw fixation: Influence of screw diameter and insertion torque.
Am J Sports Med.
1994;
22
334-338
19
Kousa P, Jarvinen T, Kannus P, Jarvinen M.
Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction.
Am J Sports Med.
2001;
29
420-425
20
Laprell H, Stein V.
The replacement of the anterior cruciate ligament with patellar tendon.
Osteosynthese International.
2001;
9
2-8
21
Mariani P P, Camillieri G, Margheritini F.
Transcondylar screw fixation in anterior cruciate ligament reconstruction.
Arthroscopy.
2001;
17
717-723
22
Markolf K L, Burchfield D M, Shapiro M M, Cha C W, Finerman G A, Slauterbeck J L.
Biomechanical consequences of replacement of the anterior cruciate ligament with the patellar ligament allograft. Part II: Forces in the graft compared with forces in the intact ligament.
J Bone Joint Surg [Am].
1996;
78
1728-1734
23
Noyes F R, Butler D I, Grood E S.
Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
J Bone Joint Surg [Am].
1984;
66
344-352
24
Papageorgiou C D, Ma C B, Abramowitch S D, Clineff T D, Woo S L.
A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model.
Am J Sports Med.
2001;
29
620-626
25
Piltz S, Strunk P, Meyer L, Piltz W, Lob G.
Fixation strength of a novel bioabsorbable expansion bolt for patellar tendon bone graft fixation: an experimental study in calf tibial bone.
Knee Surg Sports Traumatol Arthrosc.
2004;
12
376-383
26 Pfuhler S T, Poth A, Hoechst M. Cell growth analysis via BCA-staining with an extract of Totoplast processed compact bovine bone-sterile. BSL Bioservice Project Report No.: 990325; 1999
27
Rupp S, Hopf T, Hess T.
Resulting tensile forces in the human bone patellar tendon bone graft: direct force measurement in vitro.
Arthroscopy.
1999;
15
179-184
28
Seil R, Rupp S, Krauss P, Benz A, Kohn D.
Comparison of initial fixation strength between biodegradable and metallic interference screws and press-fit fixation technique in a porcine model.
Am J Sports Med.
1998;
26
815-819
29
Tecklenburg K, Hoser C, Sailer R, Oberladstätter J, Fink C.
ACL reconstruction with bone-patellar tendon-bone graft and proximal fixation with the Endobutton: A 2- to 5-year follow-up.
Unfallchirurg.
2005;
108
721-727
30
Weiler A, Hoffmann R F, Staehlin A C, Helling H J, Südkamp N P.
Biodegradable implants in sports medicine: the biological base.
Arthroscopy.
2000;
16
305-321
31
Weiler A, Windhagen H, Raschke M, Laumeyer A, Hoffmann R.
Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws.
Am J Sports Med.
1998;
26
119-128
32
Weimar A, Zantop T, Rummler M, Hassenpflug J, Petersen W.
Primary stability of bone-tendon-patellar-bone graft fixation with biodegradable pins.
Arthroscopy.
2003;
19
1097-1102
33
Zantop T, Welbers B, Weimann A, Rummler M, Hedderich J, Musahl V, Petersen W.
Biomechanical evaluation of a new cross-pin technique for the fixation of different sized bone-patellar tendon-bone grafts.
Knee Surg Sports Traumatol Arthrosc.
2004;
12
520-527
Dr. R. Strehl
Department of Trauma and Reconstructive Surgery · University Hospital of Marburg
Baldingerstrasse
35033 Marburg
Germany
Telefon: +49/64 21/2 86 61 26
Fax: +49/64 21/95 38 88
eMail: strehl@med.uni-marburg.de