RSS-Feed abonnieren
DOI: 10.1055/s-2007-963295
© Georg Thieme Verlag KG Stuttgart · New York
Molekulare Bildgebung der Apoptose bei kardiovaskulären Erkrankungen
Molecular Imaging of Apoptosis in Cardiovascular DiseasesPublikationsverlauf
eingereicht: 14.12.2006
angenommen: 16.3.2007
Publikationsdatum:
29. Juni 2007 (online)

Zusammenfassung
Die molekulare Bildgebung funktioneller Parameter wie der Apoptose (programmierter Zelltod) in vivo eröffnet in der klinischen Diagnostik und wissenschaftlichen Forschung neue Dimensionen. Insbesondere bei kardiovaskulären Erkrankungen, die in westlichen Industrienationen hauptsächlich für Morbidität und Mortalität verantwortlich sind, sind neue nichtinvasive Untersuchungstechniken erforderlich, die eine frühzeitige Diagnose schwerwiegender Erkrankungen ermöglichen. Da Apoptose im Gegensatz zur Nekrose schon bei geringfügigen Alterationen des Mikroenvironments von Zellen auftreten und bei zahlreichen kardiovaskulären Erkrankungen eine Rolle spielen, gibt es bereits jetzt weltweit mehrere Forschungsansätze zur molekularen Bildgebung der Apoptose in vivo. In der vorliegenden Übersicht werden die Grundlagen der Apoptose beim Myokardinfarkt, Myokarditis, Atherosklerose, Restenosierung nach Angioplastie und Stentimplantation, bislang eingesetzte bildgebende Techniken, erzielte Resultate und zukünftige Perspektiven der molekularen Bildgebung der Apoptose dargestellt.
Abstract
Molecular imaging of functional parameters such as apoptosis (programmed cell death) in vivo opens new possibilities in clinical diagnostic and scientific research. Especially in the case of cardiovascular diseases that are mainly responsible for both morbidity and mortality in Western industrial nations, innovative non-invasive examination strategies are necessary for early diagnosis of these diseases. Since apoptosis unlike necrosis is present even after minor alterations of the microenvironment of cells and has been shown to be involved in a large number of cardiovascular diseases, there are currently several experimental studies underway with the goal of imaging apoptosis in vivo. The review discusses the basics of apoptosis in myocardial infarction, myocarditis, atherosclerosis, restenosis after angioplasty and stent implantation, currently used imaging techniques, achieved results, and future possibilities for molecular imaging of apoptosis.
Key words
cardiac - vascular - molecular imaging
Literatur
- 1
Grimm J, Wunder A.
Molekulare Bildgebung: Stand der Forschung.
Fortschr Röntgenstr.
2005;
177
326-337
MissingFormLabel
- 2
Ittrich H, Lange C, Dahnke H. et al .
Untersuchungen zur Markierung von mesenchymalen Stammzellen mit unterschiedlichen
superparamagnetischen Eisenoxidpartikeln und Nachweisbarkeit in der MRT bei 3T.
Fortschr Röntgenstr.
2005;
177
1151-1163
MissingFormLabel
- 3
Kettering M, Winter J, Zeisberger M. et al .
Magnetisch basierte Steigerung der Nanopartikelaufnahme in Tumorzellen: Kombination
von magnetisch induzierter Zellmarkierung und magnetischer Wärmebehandlung.
Fortschr Röntgenstr.
2006;
178
1255-1260
MissingFormLabel
- 4
Böhm I, Träber F, Block W. et al .
Molekulare Bildgebung von Apoptose und Nekrose - Biologische Grundlagen und Einsatz
in der Onkologie.
Fortschr Röntgenstr.
2006;
178
263-271
MissingFormLabel
- 5
Zwaal R F, Comfurius P, Bevers E M.
Surface exposure of phosphatidylserine in pathological cells.
Cell Mol Life Sci.
2005;
62
971-988
MissingFormLabel
- 6
Deguchi J O, Aikawa M, Tung C H. et al .
Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages
in vivo.
Circulation.
2006;
114
55-62
MissingFormLabel
- 7
Chen J, Tung C H, Mahmood U. et al .
In vivo imaging of proteolytic activity in atherosclerosis.
Circulation.
2002;
105
2766-2771
MissingFormLabel
- 8
Haberkorn U, Kinscherf R, Krammer P H. et al .
Investigation of a potential scintigraphic marker of apoptosis: radioiodinated Z-Val-Ala-DL-Asp(O-methyl)-fluoromethyl
ketone.
Nucl Med Biol.
2001;
28
793-798
MissingFormLabel
- 9
Kopka K, Faust A, Keul P. et al .
5-pyrrolidinylsulfonyl isatins as a potential tool for the molecular imaging of caspases
in apoptosis.
J Med Chem.
2006;
49
6704-6715
MissingFormLabel
- 10
Messerli S M, Prabhakar S, Tang Y. et al .
A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe.
Neoplasia.
2004;
6
95-105
MissingFormLabel
- 11
Bauer C, Bauder-Wuest U, Mier W. et al .
131I-labeled peptides as caspase substrates for apoptosis imaging.
J Nucl Med.
2005;
46
1066-1074
MissingFormLabel
- 12
Mahnken A H, Günther R W, Krombach G.
Kontrastangehobene MRT und MSCT zur kardialen Vitalitätsdiagnostik.
Fortschr Röntgenstr.
2006;
178
771-780
MissingFormLabel
- 13
Elsässer A, Vogt A M, Nef H. et al .
Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death.
J Am Coll Cardiol.
2004;
43
2191-2199
MissingFormLabel
- 14
Böhm I, Schild H.
Apoptosis: the complex scenario for a silent cell death.
Molecular Imaging and Biology.
2003;
5
2-14
MissingFormLabel
- 15
Vahlhaus C, Schäfers M, Bruns H J. et al .
Direct epicardial mapping can differentiate hibernating from scarred myocardium: a
validation study with 18F-FDG-PET.
Ann Noninvasive Electrocardiol.
2002;
7
349-356
MissingFormLabel
- 16
Thimister P W, Hofstra L, Liem I H. et al .
In vivo detection of cell death in the area at risk in acute myocardial infarction.
J Nucl Med.
2003;
44
391-396
MissingFormLabel
- 17
Taki J, Higuchi T, Kawashima A. et al .
Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using
99 mTc-labeled annexin V.
J Nucl Med.
2004;
45
1536-1541
MissingFormLabel
- 18
Sosnovik D E, Schellenberger E A, Nahrendorf M. et al .
Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical
nanoparticle.
Magn Reson Med.
2005;
54
718-724
MissingFormLabel
- 19
Dumont E A, Reutelingsperger C PM, Smits J FM. et al .
Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the
beating murine heart.
Nat Med.
2001;
7
1352-1355
MissingFormLabel
- 20
Persigehl T, Heindel W, Bremer C.
MR and optical approaches to molecular imaging.
Abdom Imaging.
2005;
30
342-354
MissingFormLabel
- 21
Soubret A, Ntziachristos V.
Fluorescence molecular tomography in the presence of background fluorescence.
Phys Med Biol.
2006;
51
3983-4001
MissingFormLabel
- 22
John A S, Dreyfus G D, Pennell D J.
Images in cardiovascular medicine. Reversible wall thinning in hibernation predicted
by cardiovascular magnetic resonance.
Circulation.
2005;
111
e24-5
MissingFormLabel
- 23
Ni Y, Pislaru C, Bosmans H. et al .
Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial
viability with MR imaging.
Eur Radiol.
2001;
11
876-883
MissingFormLabel
- 24
Pislaru S V, Ni Y, Pislaru C. et al .
Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI
contrast agent.
Circulation.
1999;
99
690-696
MissingFormLabel
- 25
Schellenberger E A, Bogdanov Jr A, Högemann D. et al .
Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI.
Mol Imaging.
2002;
1
102-107
MissingFormLabel
- 26
Schellenberger E A, Sosnovik D, Weissleder R. et al .
Magneto/optical annexin V, a multimodal protein.
Bioconjug Chem.
2004;
15
1062-1067
MissingFormLabel
- 27
Tilborg G A, Mulder W J, Chin P T. et al .
Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal
detection of apoptotic cells.
Bioconjug Chem.
2006;
17
865-868
MissingFormLabel
- 28
Hiller K H, Waller van C, Nahrendorf M. et al .
Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance
molecular imaging.
Mol Imaging.
2006;
5
115-121
MissingFormLabel
- 29
Heverhagen J T, Graser A, Fahr A. et al .
Encapsulation of gadobutrol in AVE-based liposomal carriers for MR detectability.
Magn Reson Imaging.
2004;
22
483-487
MissingFormLabel
- 30
Mangin M, Mahrholdt H, Sechtem U.
Diagnostik der Myokarditis: Darstellung und Bewertung der verfügbaren Methoden.
Dtsch Med Wochenschr.
2006;
131
1228-1234
MissingFormLabel
- 31
Kadalie C T.
Stellenwert der MRT bei chronischer Myokarditis.
Z Kardiol.
2005;
94
IV/94-96
MissingFormLabel
- 32
Tokita N, Hasegawa S, Maruyama K. et al .
99 mTc-Hynic-annexin V imaging to evaluate inflammation and apoptosis in rats with
autoimmune myocarditis.
Eur J Nucl Med Mol Imaging.
2003;
30
232-238
MissingFormLabel
- 33
Klug G, Trieb T, Schocke M F. et al .
Myocarditis diagnosed by magnetic resonance imaging.
Wien Klin Wochenschr.
2006;
118
21
MissingFormLabel
- 34
Allanore Y, Vignaux O, Arnaud L. et al .
Effects of corticosteroids and immunosuppressors on idiopathic inflammatory myopathy
related myocarditis evaluated by magnetic resonance imaging.
Ann Rheum Dis.
2006;
65
249-252
MissingFormLabel
- 35
Sechtem U, Mahrholdt H, Hager S. et al .
New non-invasive approaches for the diagnosis of cardiomyopathy: magnetic resonance
imaging.
Ernst Schering Res Found Workshop.
2006;
55
261-285
MissingFormLabel
- 36
Choudhury R P, Fuster V, Fayad Z A.
Molecular, cellular and functional imaging of atherosclerosis.
Nat Reviews - Drug Dis.
2004;
3
913-925
MissingFormLabel
- 37
Shah P K, Falk E, Badimon J J. et al .
Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic
plaques. Potential role of matrix-degrading metalloproteinases and implications for
plaque rupture.
Circulation.
1995;
92
1565-1569
MissingFormLabel
- 38
Johnson J L, Baker A H, Oka K. et al .
Suppression of atherosclerotic plaque progression and instability by tissue inhibitor
of metalloproteinase-2: involvement of macrophage migration and apoptosis.
Circulation.
2006;
113
2435-2444
MissingFormLabel
- 39
Kolodgie F D, Petrov A, Virmani R. et al .
Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin
V: a technique with potential for noninvasive imaging of vulnerable plaque.
Circulation.
2003;
108
3134-3139
MissingFormLabel
- 40
Schäfers M, Riemann B, Kopka K. et al .
Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in
vivo.
Circulation.
2004;
109
2554-2559
MissingFormLabel
- 41
Si-Tayeb K, Monvoisin A, Mazzocco C. et al .
Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis.
Am J Pathol.
2006;
169
1390-1401
MissingFormLabel
- 42
Odaka C, Tanioka M, Itoh T.
Matrix metalloproteinase-9 in macrophages induces thymic neovascularization following
thymocyte apoptosis.
J Immunol.
2005;
174
846-853
MissingFormLabel
- 43
Johnson L L, Schofield L M, Weber D K. et al .
Uptake of 111In-Z2D3 on SPECT imaging in a swine model of coronary stent restenosis
correlated with cell proliferation.
J Nucl Med.
2003;
45
294-299
MissingFormLabel
- 44
Dickson B C, Gotlieb A I.
Towards understanding acute destabilization of vulnerable atherosclerotic plaques.
Cardiovasc Pathol.
2003;
12
237-248
MissingFormLabel
- 45
Kietselaer B L, Reutelingsperger C P, Heidendal G A. et al .
Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in
patients with carotid-artery atherosclerosis.
N Engl J Med.
2004;
350
1472-1473
MissingFormLabel
- 46
Laxman B, Hall D E, Bhojani M D. et al .
Noninvasive real-time imaging of apoptosis.
Proc Natl Acad Sci USA.
2002;
99
16 551-16 555
MissingFormLabel
- 47
Maintz D, Ozgun M, Hoffmeier A. et al .
Selective coronary artery plaque visualization and differentiation by contrast-enhanced
inversion prepared MRI.
Eur Heart J.
2006;
27
1732-1736
MissingFormLabel
- 48
Schmitz S A.
Eisenoxidverstärkte MRT inflammatorischeratherosklerotischer Läsionen: Übersichtexperimenteller
und erster klinischer Ergebnisse.
Fortschr Röntgenstr.
2003;
175
469-476
MissingFormLabel
- 49
Cury R C, Houser S L, Furie K L. et al .
Vulnerable plaque detection by 3.0 tesla magnetic resonance imaging.
Invest Radiol.
2006;
41
112-115
MissingFormLabel
- 50
Mitra A K, Agrawal D K.
In stent restenosis: bane of the stent era.
J Clin Pathol.
2006;
59
232-239
MissingFormLabel
- 51
Skowasch D, Jabs A, Andrie R. et al .
Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis.
Tissue characteristics compared to primary atherosclerosis.
J Vasc Res.
2004;
41
525-534
MissingFormLabel
- 52
Beohar N, Flaherty J D, Davidson C J. et al .
Antirestenotic effects of a locally delivered caspase inhibitor in a balloon injury
model.
Circulation.
2004;
109
108-113
MissingFormLabel
- 53
Johnson T W, Wu Y X, Herdeg C. et al .
Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits
neointimal formation in porcine coronary arteries.
Arterioscler Thromb Vasc Biol.
2005;
25
754-759
MissingFormLabel
- 54
Indolfi C, Mongiardo A, Spaccarotella C. et al .
The present and future of drug-eluting stents.
Ital Heart J.
2005;
6
498-506
MissingFormLabel
- 55
Nguyen K T, Shaikh N, Wawro D. et al .
Molecular responses of vascular smooth muscle cells to paclitaxel-eluting bioresorbable
stent materials.
J Biomed Mater Res A.
2004;
69
513-524
MissingFormLabel
- 56
Curcio A, Torella D, Cuda G. et al .
Effect of stent coating alone on in vitro vascular smooth muscle cell proliferation
and apoptosis.
Am J Physiol Circ Physiol.
2004;
286
H902-H908
MissingFormLabel
- 57
Venkatasubramanian R T, Grassl E D, Barocas V H. et al .
Effects of freezing and cryopreservation on the mechanical properties of arteries.
Ann Biomed Eng.
2006;
34
823-832
MissingFormLabel
- 58
Laird J R, Biamino G, McNamara T. et al .
Cryoplasty for the treatment of femoropopliteal arterial disease: extended follow-up
results.
J Endovasc Ther.
2006;
13
II52-II59
MissingFormLabel
- 59
Joye J D.
The clinical application of cryoplasty for infrainguinal peripheral arterial disease.
Tech Vasc Intery Radiol.
2005;
8
160-164
MissingFormLabel
Dr. Ingrid Böhm
Radiolog. Universitätsklinik, Rheinische Friedrich-Wilhelms-Universität, Bonn
Sigmund-Freud Str. 25
53105 Bonn
Telefon: ++49/2 28/2 87 96 31
Fax: ++49/2 28/2 87 44 57
eMail: ingrid.boehm@ukb.uni-bonn.de