RSS-Feed abonnieren
DOI: 10.1055/s-2007-967958
The Nicholas Reaction: A Powerful Tool for the Stereoselective Synthesis of Bioactive Compounds
Publikationsverlauf
Publikationsdatum:
07. Februar 2007 (online)
Abstract
Polyether units are a frequent heterocyclic fragment present in numerous natural products of great biological importance and constitute significant synthons for the synthesis of pharmacologically relevant compounds. Likewise, compounds having stereochemically defined alkyl-branched hydrocarbon chains are widespread in nature and the development of new synthetic methodologies to achieve their preparation in high yields and levels of stereocontrol is currently a challenging endeavour in organic synthesis. In this account, we describe our own approach to the stereoselective synthesis of bioactive compounds using the Nicholas reaction, the discovery of unexpected reaction pathways as well as some unreported results. The scope of the title reaction, within our research interests, and its synthetic applications are outlined. Reference to important related work from others in the field is also included.
-
1 Introduction
-
2 Synthesis of Symmetrical and Unsymmetrical Linear Propargylic Ethers
-
3 Synthesis of Cyclic Propargylic Ethers
-
3.1 Primary and Secondary Alcohols as Nucleophiles
-
3.2 Epoxides as Nucleophiles
-
4 Asymmetric Intermolecular Nicholas Reaction
-
5 Synthesis of Homopropargylic Ketones
-
6 Intramolecular Propargylic Reduction
-
7 Summary
Key words
alkynes - cobalt complexes - Nicholas reaction - stereoselective synthesis - natural products - ethers
-
3a
Nicolaou KC.Sorensen EJ. In Classics in Total Synthesis Wiley-VCH; Weinheim: 1996. -
3b
Nicolaou KC.Snyder SA. In Classics in Total Synthesis Vol. 2: Wiley-VCH; Weinheim: 2003. -
4a
Asymmetric Synthesis
Morrison JD. Academic Press; New York: 1985. -
4b
Comprehensive Asymmetric Catalysis
Jacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 1999. -
5a
Yasumoto T.Murata M. Chem. Rev. 1993, 93: 1897 -
5b
Gallimore AR.Spencer JB. Angew. Chem. Int. Ed. 2006, 45: 4406 - For recent reviews on the synthesis of marine polycyclic ethers, see:
-
6a
Inoue M. Chem. Rev. 2005, 105: 4379 -
6b
Nakata T. Chem. Rev. 2005, 105: 4314 - 7
Álvarez E.Díaz MT.Pérez R.Ravelo JL.Regueiro A.Vera JA.Zurita D.Martín JD. J. Org. Chem. 1994, 59: 2848 -
8a
Nicolaou KC.Hwang C.-K.Duggan ME.Reddy KB.Marron BE.Macgarry DG. J. Am. Chem. Soc. 1986, 108: 6800 -
8b
Schreiber SL.Kelly SE.Porco JA.Sammakia T.Suh EM. J. Am. Chem. Soc. 1988, 110: 6210 -
8c
Robinson RA.Clark JS.Holmes AB. J. Am. Chem. Soc. 1993, 115: 10400 - 9
Kotsuki H. Synlett 1992, 97 -
10a
Yamada J.Asano T.Kadota I.Yamamoto Y. J. Org. Chem. 1990, 55: 6066 -
10b
Fum GC.Grubbs RH. J. Am. Chem. Soc. 1992, 114: 5426 -
10c
Berger D.Overman LE.Renhowe PA. J. Am. Chem. Soc. 1993, 31: 9305 -
11a
Boivin TLB. Tetrahedron 1987, 43: 3309 -
11b
Nicolaou KC.Prasad CVC.Somers PK.Hwang C.-K. J. Am. Chem. Soc. 1989, 111: 5335 -
11c
Suzuki T.Sato O.Hirama M. Tetrahedron Lett. 1990, 37: 4349 - 12
Dictionary of Natural Products
4th Suppl., Vol. 11:
Buckingham J. Chapman & Hall; New York: 1998. - 13
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.Fleming I. Pergamon Press; Oxford: 1991. - 14
Faulkner DJ. Nat. Prod. Rep. 1999, 16: 155 -
15a
Abiko A.Masamune S. Tetrahedron Lett. 1996, 37: 1081 -
15b
Birkbeck AA.Enders D. Tetrahedron Lett. 1998, 39: 7823 -
16a
Norte M.Fernández JJ.Padilla A. Tetrahedron Lett. 1994, 35: 3413 -
16b
Calter MA.Guo X.Liao W. Org. Lett. 2001, 3: 1499 -
16c
Calter MA.Guo X.Liao W. J. Org. Chem. 2001, 66: 7500 - For comprehensive reviews on the chemistry uses of cobalt-complexed propargylic cations and related, see:
-
17a
Nicholas KM. Acc. Chem. Res. 1987, 20: 207 -
17b
Welker ME. Curr. Org. Chem. 2001, 5: 785 -
17c
Green JR. Curr. Org. Chem. 2001, 5: 809 -
17d
Müller TJJ. Eur. J. Org. Chem. 2001, 2021 -
17e
Teobald BJ. Tetrahedron 2002, 58: 4133 -
17f
Fryatt R.Christie SDR. J. Chem. Soc., Perkin Trans. 1 2002, 447 -
17g For an interesting study on site selectivity of nucleophile incorporation in 3-acetoxycyclohept-1-en-4-ynedicobalt hexacarbonyl, see:
DiMartino J.Green JR. Tetrahedron 2006, 62: 1402 - 18
Gachkova N.Cassel J.Leue S.Kann N. J. Comb. Chem. 2005, 7: 449 ; and references therein -
19a
Schore NE. In Comprehensive Organometallic Chemistry II Vol. 12:Hegedus LS. Pergamon; Oxford: 1995. Chapter 7.2. p.403 -
19b
Krafft ME.Cheung YY.Wright C.Cali R. J. Org. Chem. 1996, 61: 3912-3915 ; and references cited therein - 20 For the first approach to the induction of enantioselectivity in the Nicholas C-C coupling version, see:
Montaña AM.Cano M. Tetrahedron 2002, 58: 933 - 21
Schreiber SL.Klimas MT.Sammakia T. J. Am. Chem. Soc. 1987, 109: 5749 - 22
Muehldorf AV.Guzmán-Pérez A.Kluge AE. Tetrahedron Lett. 1994, 35: 8755 - 23
Melikan GC.Bright S.Monroe T.Handcastle KI.Ciurash J. Angew. Chem., Int. Ed. Engl. 1998, 37: 161 - 24
Bradley DH.Khan MA.Nicholas KM. Organometallics 1989, 8: 554 - 25
Caffyn AJM.Nicholas KM. J. Am. Chem. Soc. 1993, 115: 6438 - 26
Betancort JM.Martín VS.Padrón JM.Palazón JM.Ramírez MA.Soler MA. J. Org. Chem. 1997, 62: 4570 ; and references cited therein -
27a
March J. Advanced Organic Chemistry John Wiley & Sons; New York: 1992. -
27b
Brummond KM.Kent JL. Tetrahedron 2000, 56: 3263 - 28
Jenner G. Tetrahedron Lett. 1988, 29: 2445 - 29 For an extraordinary application of the Williamson reaction to the preparation of alcohol protecting groups, see:
Green TW. Protective Groups in Organic Synthesis John Wiley & Sons; New York: 1999. - 30
Díaz DD.Martín VS. Tetrahedron Lett. 2000, 41: 9993 - 31
Díaz DD.Martín T.Martín VS. Org. Lett. 2001, 3: 3289 - 32 For the first example of the synthesis of 1,4-difunctionalized but-2-yne complexes by a double Nicholas reaction, see:
Seiichi T.Takumichi S.Kunio O. Synlett 1992, 70 -
33a
Palazón JM.Martín VS. Tetrahedron Lett. 1995, 36: 3549 -
33b
Betancort JM.Martín T.Palazón JM.Martín VS. J. Org. Chem. 2003, 68: 3216 - 34 For an efficient synthesis of oxaspiro[m.n] skeletons based on the Nicholas reaction, see:
Chisato M.Haruhisa Y.Misato S.Miyoji H. Tetrahedron 2002, 58: 2755 - 35
Betancort JM.Rodríguez CM.Martín VS. Tetrahedron Lett. 1998, 39: 9773 - 36 For the influence of a secondary carbinol to control the cyclization stereochemistry in isolated rings, see:
Díaz DD.Betancort JM.Crisóstomo FRP.Martín T.Martín VS. Tetrahedron 2002, 58: 1913 - 37
Katsuki T.Martín VS. Organic Reactions Vol. 48:Paquette LA. Wiley; New York: 1996. p.1-299 - 38
Palazón JM.Soler MA.Martín VS. Tetrahedron Lett. 1993, 34: 5471 - 39
Ramírez MA.Padrón JM.Palazón JM.Martín VS. J. Org. Chem. 1997, 62: 4584 - 40
Nicolaou KC.Hwang C.-K.Marron BE.DeFress SA.Couladourus EA.Abe Y.Carroll PJ.Snyder JP. J. Am. Chem. Soc. 1990, 112: 3040 - 41
Crisóstomo FRP.Carrillo R.Martín T.Martín VS. Tetrahedron Lett. 2005, 45: 2829 - 42
Díaz DD.Ramírez MA.Ceñal JP.Saad R.Tonn CE.Martín VS. Chirality 2003, 15: 148 - 43
Takase M.Morikawa T.Abe H.Inouye M. Org. Lett. 2003, 5: 625 - 44
Christie SDR.Davoile RJ.Elsegood MRJ.Fryatt R.Jones RCF.Pritthard GJ. Chem. Commun. 2004, 2474 - 45
Lebold TP.Carson CA.Kerr MA. Synlett 2006, 364 - 46
Crisóstomo FRP.Martín T.Martín VS. Org. Lett. 2004, 6: 565 - 48
Davies JE.Hope-Weeks LJ.Mays MJ.Raithby PR. Chem. Commun. 2000, 1411 - 49
Shea KM.Closser KD.Quintal MM. J. Org. Chem. 2005, 70: 9088 -
50a
Lee H.Kim H.Baek S.Kim S.Kim D. Tetrahedron Lett. 2003, 44: 6609 -
50b
Carreno MC.Mazery RD.Urbano A.Colobert F.Solladié G. Org. Lett. 2004, 6: 297 -
50c
Lee HJ.Kim HS.Yoon T.Kim B.Kim S.Kim H.-D.Kim D. J. Org. Chem. 2005, 70: 8723 - 53
Ortega N.Martín T.Martín VS. Org. Lett. 2006, 8: 871 - The endo-complexes need reductive decomplexation procedures to successfully achieve the synthesis of the corresponding cyclic systems:
-
54a
Hosokawa S.Isobe M. Tetrahedron Lett. 1998, 39: 2609 -
54b
Nakamura T.Matsui T.Tanino K.Kuwajima I. J. Org. Chem. 1997, 62: 3032 - 55
Young DG.Burlison JA.Peters U. J. Org. Chem. 2003, 68: 3494 - 56
Kira K.Tanda H.Hamajima A.Baba T.Takai S.Isobe M. Tetrahedron 2002, 58: 6485 ; and references cited therein -
57a
Isobe M.Yenjai C.Tanaka S. Synlett 1994, 11: 916 -
57b
Yenjai C.Isobe M. Tetrahedron 1998, 54: 916 -
57c
Isobe M.Hosokawa S.Kira K. Chem. Lett. 1996, 473 -
57d
Hosokawa S.Isobe M. J. Org. Chem. 1999, 64: 37 -
57e
Saeeng R.Isobe M. Tetrahedron Lett. 1999, 40: 1911 -
57f For a review, see:
Isobe M.Nishizawa R.Hosokawa S.Nishikawa T. Chem. Commun. 1998, 2665 -
58a
Mukai C.Sugimoto Y.-I.Miyazawa K.Yamaguchi S.Hanaoka M. J. Org. Chem. 1998, 63: 6281 -
58b
Mukai C.Yamaguchi S.Ichiryu T.Hanaoka M. J. Org. Chem. 2000, 65: 6761 - 59
Mukai C.Yamaguchi S.Sugimoto Y.Miyakoshi N.Kasamatsu E.Hanaoka M. Tetrahedron 2000, 56: 2203 - 60
Quintal MM.Closser KD.Shea KM. Org. Lett. 2004, 6: 4949 - 61
Schreiber SL.Sammakia T.Crowe WE. J. Am. Chem. Soc. 1986, 108: 3128 - In order to avoid elimination by-products, all reactions were carried out at -20 °C. See:
-
63a
Saksena AK.Green MJ.Mangiaracina P.Wong JK.Kreutner Gulbenkian AR. Tetrahedron Lett. 1985, 26: 6423 -
63b
Melikyan GG.Mineif O.Vostrowsky O.Bestmann HJ. Synthesis 1991, 633 -
63c
Berger D.Overman LE. J. Am. Chem. Soc. 1997, 119: 2446 -
64a
Mancuso AJ.Huang S.-L.Swern D. J. Org. Chem. 1978, 43: 2480 -
64b
Schmieder-van de Vondervoort L.Bouttemy S.Padrón JM.Le Bras J.Muzart J.Alsters PL. Synlett 2002, 243 - 65
Majetich G.Zhang Y.Dreyer G. Tetrahedron Lett. 1993, 34: 449 -
66a
Kende AS.Fludzinski P.Hill JH.Swenson W.Clardy J. J. Am. Chem. Soc. 1984, 106: 3551 -
66b
Nagasawa T.Taya K.Kitamura M.Suzuki K. J. Am. Chem. Soc. 1996, 118: 8949 - 67
Soler MA.Martín VS. Tetrahedron Lett. 1999, 40: 2815 - 68
Saksena AK.Green MJ.Mangiaracina P.Wong JK.Kreutner W.Gulbenkian AR. Tetrahedron Lett. 1985, 26: 6423 - 69
Díaz DD.Martín VS. Tetrahedron Lett. 2000, 41: 743 - 70
Díaz DD.Martín VS. Org. Lett. 2000, 2: 335 -
71a
Brandsma L. In Preparative Acetylenic Chemistry Elsevier; Amsterdam: 1988. p.39-40 -
71b
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.271-292 - 72
Díaz DD.Ramírez MA.Martín VS. Chem. Eur. J. 2006, 12: 2593 - 73
Díaz DD.Martín VS. J. Org. Chem. 2000, 65: 7896 - 74
Díaz DD.Crisóstomo FRP.Martín VS. Isr. J. Chem. 2001, 41: 297
References and Notes
Present address: Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
2Present address: Phenomix Corporation, 5871 Oberlin Dr., San Diego, CA 92126, U.S.A.
47(a) Unpublished results. (b) X-ray data can be obtained directly from the authors upon request.
51We had difficulties separating both diastereoisomers. At the present time we cannot ensure which isomer is predominant.
52Montmorillonite K-10 has been recently reported as a convenient acid component in the Nicholas reaction, see ref. 41.
62These complexes possess an outstanding resolution under silica gel chromatography and both diastereoisomers can be readily separated in this way.