RSS-Feed abonnieren
DOI: 10.1055/s-2007-967994
Lawesson’s Reagent and Microwaves: A New Efficient Access to Benzoxazoles and Benzothiazoles from Carboxylic Acids under Solvent-Free Conditions
Publikationsverlauf
Publikationsdatum:
24. Januar 2007 (online)
Abstract
Lawesson’s reagent acts as an efficient promoter in the solvent-free microwave-assisted synthesis of 2-substituted benzoxazoles from carboxylic acids and 2-aminophenol, and thus, constitutes a general synthetic method for these compounds. This new application of Lawesson’s reagent is valid also for benzothiazoles with very high efficiency level. A variety of aromatic, heteroaromatic and aliphatic carboxylic acids react under the conditions developed with good yields in all cases. Thiobenzoic acid is a good alternative for microwave-assisted synthesis of 2-phenylbenzoxazole and 2-phenylbenzothiazole in the absence of solvents.
Key words
benzothiazoles - benzoxazoles - Lawesson’s reagent - microwaves - thiobenzoic acid
- 1
Pinar A.Yurdakul P.Yildiz I.Temiz-Arpaci O.Acan NL.Aki-Sener E.Yalcin I. Biochem. Biophys. Res. Commun. 2004, 317: 670 - 2
Rida SM.Ashour FA.El-Hawash SAM.ElSemary MM.Badr MH.Shalaby MA. Eur. J. Med. Chem. 2005, 40: 949 - 3
Sum P.-E.How D.Torres N.Newman H.Petersen PJ.Mansoura TS. Bioorg. Med. Chem. Lett. 2003, 13: 2607 - 4
Mahran MA.El-Nassry SMF.Allam SR.El-Zawawy LA. Pharmazie 2003, 58: 527 - 5
Sondhi SM.Singh N.Kumar A.Lozach O.Meijer L. Bioorg. Med. Chem. 2006, 14: 3758 - 6
Sato F.Inoue Y.Omodani T.Imano K.Okazaki H.Takemura T.Komiya M. Bioorg. Med. Chem. Lett. 2002, 12: 551 - 7
Reiser A.Leyshon LJ.Saunders D.Mijovic MV.Bright A.Bogie J. J. Am. Chem. Soc. 1972, 94: 2414 - 8
Ke WJ.Xu HS.Liu XF.Luo XH. Heterocycles 2000, 53: 1821 - 9
Kelleher KA, andStanhope MT. inventors; US 2002069453. ; Chem. Abstr. 2002, 137, 7475 - 10
Song KC.Kim JS.Park SM.Chung K.-C.Ahn S.Chang S.-K. Org. Lett. 2006, 8: 3413 - 11
Luan XH.Cerqueira NMFSA.Oliveira AMAG.Raposo MMM.Rodrigues LMCP.Campos AMFO. Adv. Colour Sci. Tech. 2002, 5: 18 - 12
Hoveyda HR.Rettig SJ.Orvig C. Inorg. Chem. 1993, 32: 4909 - 13
Dolbier WR.Burkholder CR.Medebielle M. J. Fluorine Chem. 1999, 95: 127 - 14
So Y.-H.Heeschen JP. J. Org. Chem. 1997, 62: 3552 - 15
Cohen VI. J. Heterocycl. Chem. 1979, 16: 13 - 16
Kumar RV. Asian J. Chem. 2004, 16: 1241 -
17a
Microwaves in Organic Synthesis
Loupy A. Wiley-VCH; Weinheim: 2002. -
17b
Kappe CO.Stadler A. Microwaves in Organic and Medicinal Chemistry Wiley-VCH; Weinheim: 2005. - 18
Kumar R.Selvam C.Kaur G.Chakraborti AK. Synlett 2005, 1401 - 19
Chakraborti AK.Selvam C.Kaur G.Bhagat S. Synlett 2004, 851 - 20
Bougrin K.Loupy A.Soufiaoui M. Tetrahedron 1998, 54: 8055 - 21
Rostamizadeh S.Derfshian E. J. Chem. Res., Synop. 2001, 227 - 22
Njoya Y.Gellis A.Crozet MP.Vanelle P. Sulfur Lett. 2003, 26: 67 - 23
Evindar G.Batey RA. J. Org. Chem. 2006, 71: 1802 - 24
Pottorf RS.Chadha NK.Katkevics M.Ozola V.Suna E.Ghane H.Regberg T.Player MR. Tetrahedron Lett. 2003, 44: 175 - 25
Kamila S.Zhang H.Biehl ER. Heterocycles 2005, 65: 2119 - 26
Paul S.Gupta M.Gupta R. Synth. Commun. 2002, 32: 3541 - 27
Villemin D.Hammadi M.Martin B. Synth. Commun. 1996, 26: 2895 - 28
Kodomari M.Tamaru Y.Aoyama T. Synth. Commun. 2004, 34: 3029 - 29
Rann BC.Jana R.Dey SS. Chem. Lett. 2004, 33: 274 - 30
Janssen MJ. In The Chemistry of Carboxylic Acid and EstersPatai S. Wiley; Chichester: 1969. p.705-764 - 31
Filippi J.-J.Fernandez X.Lizzani-Cuvelier L.Loiseau A.-M. Tetrahedron Lett. 2003, 44: 6647 - 32
Wu X.Mahalingam AK.Alterman M. Tetrahedron Lett. 2005, 46: 1501 - 33
Valette L.Poulain S.Fernandez X.Lizzani-Cuvelier L. J. Sulfur Chem. 2005, 26: 155 - 34
Deng S.-L.Chen R.-Y. Monatsh. Chem. 2004, 135: 1113 - 35
Huang H.-M.Yu H.-T.Chen P.-L.Han J.Meng J.-B. Youji Huaxue 2004, 24: 502 ; Chem. Abstr. 2004, 141, 295952 - 36
Kiryanov AA.Sampson P.Seed AJ. J. Org. Chem. 2001, 66: 7925 - 37
Jesberger M.Davis TP.Barner L. Synthesis 2003, 1929 - 38
Pedersen U.Thorsen M.El-Khrisy EEAM.Clausen K.Lawesson SO. Tetrahedron 1982, 38: 3267 - 39
Shi W.Shafaei-Fallah M.Anson CE.Rothenberger A. J. Chem. Soc., Dalton Trans. 2005, 3909 - 42
Yoshifuji M.Nagase R.Kawashima T.Inamoto N. Heterocycles 1978, 10: 57 - 43
Brewster K.Chittenden RA.Harrison JM.Inch TD.Brown C. J. Chem. Soc., Perkin Trans. 1 1976, 1291 - 44
El-Sheikh MI.Marks A.Biehl ER. J. Org. Chem. 1981, 46: 3256 - 45
Yoshifuji M.Nagase R.Inamoto N. Bull. Chem. Soc. Jpn. 1982, 55: 873 - 46
Tauer E.Grellmann KH. J. Org. Chem. 1981, 46: 4252 - 47
Bayh O.Awad H.Mongin F.Hoarau C.Bischoff L.Trecourt F.Queguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. J. Org. Chem. 2005, 70: 5190 - 48
Prakash O.Batra A.Sharma V.Saini RK.Verma RS. J. Indian Chem. Soc. 2003, 80: 1031 - 49
Shimada T.Yamamoto Y. J. Am. Chem. Soc. 2003, 125: 6646 - 50
Itoya K.Sawada H.Kakimoto M.Imai Y. Macromolecules 1995, 28: 2611 - 51
Bywater WG.Coleman WR.Kamm O.Merritt H. J. Am. Chem. Soc. 1945, 67: 905 - 53
Osuka A.Uno Y.Horiuchi H.Suzuki H. Synthesis 1984, 145 - 54
Mortimer CG.Wells G.Crochard J.-P.Stone EL.Bradshaw TD.Stevens MFG.Westwell AD. J. Med. Chem. 2006, 49: 179 - 55
Ulrich H. In Science of Synthesis Vol. 11:Schaumann E. Thieme; Stuttgart: 2001. p.835-912 - 56
Deligeorgiev TC. Dyes Pigm. 1990, 12: 243 - 57
Itoh T.Nagata K.Ishikawa H.Ohsawa A. Heterocycles 2004, 63: 2769 - 58
Tzanopoulou S.Pirmettis IC.Patsis G.Raptopoulou C.Terzis A.Papadopoulos M.Pelecanou M. Inorg. Chem. 2006, 45: 902 - 59
Boger DL. J. Org. Chem. 1978, 43: 2296 - 60
Elderfield RC.McClenachan EC. J. Am. Chem. Soc. 1960, 82: 1982 - 61
DuBrow PL.Hoerr CW.Harwood HJ. J. Am. Chem. Soc. 1952, 74: 6241 - 62
Shabana R.Atrees SS. Phosphorus, Sulfur Silicon Relat. Elem. 1995, 105: 57
References and Notes
Lawesson reagent is used as purchased from Fluka (98% purity). Reactions must be carried out in an efficient fume hood.
41
General Procedure for the Synthesis of Benzoxazoles 4 or Benzothiazoles 5 - Synthesis of 3-Methylbenzoxazole (
4f).
A mixture of 3-methylbenzoic acid (6f, 136 mg, 1 mmol), 2-aminophenol (109 mg, 1 mmol) and Lawesson’s reagent (141 mg, 0.35 mmol) was irradiated in an open vessel with microwaves in a monomode oven (Discover CEM, 300W and temperature control set at 190 °C measured with an IR sensor) for 4 min. The crude was dissolved in CH2Cl2 (30 mL) and washed with 10% aq NaOH (2 × 20 mL), dried (Na2SO4) and evaporated to give pure (as per NMR) 2-(3-methylphenyl)benzoxazole (4f), further purification by flash chromatography gave 188 mg (90%) as a white solid. Mp 82-83 °C (EtOH), lit.
[44]
81-82 °C. 1H NMR (300 MHz, CDCl3): δ = 8.09 (s, 1 H, ArH), 8.05 (d, 1 H, ArH, J = 7.6 Hz), 7.79-7.76 (m, 1 H, ArH), 7.58-7.55 (m, 1 H, ArH), 7.40 (t, 1 H, ArH, J = 7.6 Hz), 7.35-7.32 (m, 2 H, ArH), 2.45 (s, 3 H, CH3). 13C NMR (75 MHz, CDCl3): δ = 163.5, 151.0, 142.3, 139.0, 132.6, 129.1, 128.4, 127.2, 125.3, 125.0, 124.8, 120.2, 110.8, 21.6. MS (EI): m/z (%) = 209 (100) [M+], 180 (7).
Data of Previously Undescribed Compounds.
2-(2,3-Dimethoxyphenyl)benzoxazole (4c): mp 75-76 °C (hexane). 1H NMR (300 MHz, CDCl3): δ = 7.83-7.77 (m, 1 H, ArH), 7.69 (dd, 1 H, ArH, J = 7.9, 1.5 Hz), 7.60-7.53 (m, 1 H, ArH), 7.35-7.29 (m, 2 H, ArH), 7.14 (t, 1 H, ArH, J = 8.0 Hz), 7.03 (dd, 1 H, ArH, J = 8.2, 1.4 Hz), 3.99 (s, 3 H, OCH3), 3.87 (s, 3 H, OCH3). 13C NMR (75 MHz, CDCl3): δ = 161.7, 154.0, 150.9, 149.0, 142.2, 125.3, 124.6, 124.5, 122.6, 122.0, 120.4, 115.6, 110.8, 61.7, 56.3. MS (EI): m/z (%) = 255 (100) [M+], 240 (18), 226 (56), 212 (10), 197 (13), 169 (2). Anal. Calcd for C15H13NO3: C, 70.58; H, 5.13; N, 5.49. Found: C, 70.41; H, 5.09; N, 5.38.
2-(2,4,5-Trimethoxyphenyl)benzoxazole (4e): mp 146-148 °C (hexane). 1H NMR (300 MHz, CDCl3): δ = 7.72-7.69 (m, 1 H, ArH), 7.59 (s, 1 H, ArH), 7.50-7.46 (m, 1 H, ArH), 7.26-7.21 (m, 2 H, ArH), 6.53 (s, 1 H, ArH), 3.91, 3.87 and 3.86 (3 s, 3 × 3 H, 3 × OCH3). 13C NMR (75 MHz, CDCl3): δ = 163.3, 155.2, 154.2, 149.1, 143.0, 140.5, 125.0, 124.9, 118.9, 110.5, 108.3, 101.5, 100.9, 56.7, 56.2. MS (EI): m/z (%) = 285 (100) [M+], 271 (29), 256 (76), 242 (19), 240 (17), 227 (7), 212 (13). Anal. Calcd for C16H15NO4: C, 67.36; H, 5.30; N, 4.91. Found: C, 67.66; H, 4.96; N, 5.11.
2-[(3,4-Dimethoxyphenyl)methyl]benzoxazole (4n): mp 66-68 °C (hexane). 1H NMR (300 MHz, CDCl3): δ = 7.68-7.64 (m, 1 H, ArH), 7.43-7.40 (1 H, m, ArH), 7.27-7.22 (m, 2 H, ArH), 6.91-6.87 (m, 2 H), 6.80 (d, 1 H, ArH, 8.0 Hz), 4.17 (s, 2 H, CH2), 3.83 and 3.81 (2 s, 2 × 3 H, 2 × OCH3). 13C NMR (75 MHz, CDCl3): δ = 165.7, 151.2, 149.4, 148.6, 141.6, 127.4, 124.9, 124.4, 121.4, 120.0, 112.4, 111.7, 110.6, 56.1, 35.0. MS (EI): m/z (%) = 269 (100) [M+], 254 (42), 226 (7), 183 (5), 151 (20). Anal. Calcd for C16H15NO3: C, 71.36; H, 5.61; N, 5.20. Found: C, 71.05; H, 5.73; N, 5.16.
2-(2,4,5-Trimethoxyphenyl)benzothiazole (5e): mp 200-201 °C (EtOH). 1H NMR (300 MHz, CDCl3): δ = 8.07 (s, 1 H, ArH), 8.04 (d, 1 H, ArH, J = 7.9 Hz), 7.89 (d, 1 H, J = 7.9 Hz), 7.46 (ddd, 1 H, ArH, J = 8.2, 7.0, 1.2 Hz), 7.34 (dd, 1 H, ArH, J = 7.9, 0.9 Hz), 6.62 (s, 1 H, ArH), 4.04, 4.01 and 3.97 (3 s, 3 × 3 H, 3 × OCH3). 13C NMR (75 MHz, CDCl3): δ = 163.3, 153.0, 152.4, 152.3, 143.0, 136.0, 126.0, 124.4, 122.5, 121.4, 114.6, 111.5, 97.4, 56.8, 56.7, 56.3. MS (EI): m/z (%) = 301 (100) [M+], 286 (11), 272 (30), 256 (11), 228 (11), 215 (4), 186 (5), 160 (2). Anal. Calcd for C16H15NO3S: C, 63,77; H, 5,02; N, 4,65. Found: C, 64.05; H, 4.73; N, 4.87.
2-[(3,4-Dimethoxyphenyl)methyl]benzothiazole (5n): mp 68-69 °C (hexane). 1H NMR (300 MHz, CDCl3): δ = 7.97 (dd, 1 H, ArH, J = 8.8, 0.9 Hz), 7.73 (dd, 1 H, J = 7.9, 1.3 Hz), 7.40 (td, 1 H, ArH, J = 7.9, 1.2 Hz), 7.28 (t, 1 H, ArH, J = 7.6 Hz), 6.90-6.85 (m, 2 H, ArH), 6.80 (d, 1 H, ArH, J = 7.9 Hz), 4.34 (s, 2 H, CH2), 3.82 and 3.81 (2 s, 2 × 3 H, 2 × OCH3). 13C NMR (75 MHz, CDCl3): δ = 171.9, 153.5, 149.4, 148.6, 135.8, 129.9, 126.1, 125.0, 122.9, 121.7, 121.5, 112.6, 111.6, 56.03, 56.00, 40.4. MS (EI): m/z (%) = 285 (100) [M+], 270 (9), 242 (13), 227 (11), 199 (14), 151 (10). Anal. Calcd for C16H15NO2S: C, 67.34; H, 5.30; N, 4.91. Found: C, 67.14; H, 5.28; N, 4.85.