Subscribe to RSS
DOI: 10.1055/s-2007-968004
A New, Highly Stereoselective Synthesis of β-Unsubstituted (Z)-γ-Alkylidenebutenolides Using Bromine as a Removable Stereocontrol Element
Publication History
Publication Date:
24 January 2007 (online)
Abstract
Several β-unsubstituted (Z)-γ-alkylidenebutenolides have been prepared in highly stereocontrolled fashion by implementing a steric directing group stratagem in the vinylogous aldol condensation of butenolides with aldehydes. Applications to the synthesis of the antitumor heptene (S)-melodorinol and a thiophenelactone from Chamaemelum nobile L. are described.
Key words
aldol reaction - bromobutenolides - dehalogenation - 2-silyloxyfurans - stereoselectivity
- Reviews on the synthesis of γ-alkylidenebutenolides:
-
1a
Negishi E.Kotora M. Tetrahedron 1997, 53: 6707 -
1b
Brückner R. Chem. Commun. 2001, 141 -
1c
Brückner R. Curr. Org. Chem. 2001, 5: 679 -
1d
Rossi R.Bellina F. In Targets in Heterocyclic Systems: Chemistry and Properties Vol. 5:Attanasi OA.Spinelli D. Società Chimica Italiana; Roma: 2002. p.169-198 - For more recent work, see:
-
2a
Anastasia L.Xu C.Negishi E. Tetrahedron Lett. 2002, 43: 5673 -
2b
Rousset S.Abarbri M.Thibonnet J.Parrain J.-L.Duchêne A. Tetrahedron Lett. 2003, 44: 7633 -
2c
Olpp T.Brückner R. Angew. Chem. Int. Ed. 2005, 44: 1553 -
2d
Takayama H.Sudo R.Kitajima M. Tetrahedron Lett. 2005, 46: 5795 -
2e
Doroh B.Sulikowski GA. Org. Lett. 2006, 8: 903 -
2f
Albrecht U.Nguyen VTH.Langer P. Synthesis 2006, 1111 -
2g
Olpp T.Brückner R. Angew. Chem. Int. Ed. 2006, 45: 4023 - Natural melodorinol consists of a ca. 2.5:1 mixture of the R and S enantiomers:
-
3a
Lu X.Chen G.Xia L.Guo G. Tetrahedron: Asymmetry 1997, 8: 3067 -
3b See also:
Pohmakort M.Tuchinda P.Premkaisorn P.Limpongpan A.Reutrakul V. Heterocycles 1999, 51: 795 - Synthesis of xerulin and its relatives:
-
4a
Siegel K.Brückner R. Synlett 1999, 1227 -
4b
Negishi E.Alimardanov A.Xu C. Org. Lett. 2000, 2: 65 -
4c
Rossi R.Belina F.Catanese A.Mannina L.Valensin D. Tetrahedron 2000, 56: 479 -
4d
Sorg A.Siegel K.Brückner R. Chem. Eur. J. 2005, 11: 1610 -
5a
Hjelmgaard T.Persson T.Rasmussen TB.Givskov M.Nielsen J. Bioorg. Med. Chem. 2003, 11: 3261 -
5b
Piper S.Risch N. ARKIVOC 2003, (i): 86 - High Z-selectivity has been obtained in some cases under equilibration conditions:
-
6a
Pohmakort M.Tuchinda P.Premkaisorn P.Reutrakul V. Tetrahedron 1998, 54: 11297 -
6b
Sundar N.Kundu MK.Reddy PV.Mahendra G.Bhat SV. Synth. Commun. 2002, 32: 1881 -
7a
Sorg A.Siegel K.Brückner R. Synlett 2004, 321 -
7b
Sorg A.Blank F.Brückner R. Synlett 2005, 1286 - 8
Vaz B.Alvarez R.Brückner R.de Lera AR. Org. Lett. 2005, 7: 545 -
9a
Boukouvalas J.Maltais F.Lachance N. Tetrahedron Lett. 1994, 35: 7897 -
9b
Boukouvalas J.Lachance N.Ouellet M.Trudeau M. Tetrahedron Lett. 1998, 39: 7665 - For recent synthetic applications, see:
-
10a
Bellina F.Anselmi C.Viel S.Mannina L.Rossi R. Tetrahedron 2001, 57: 9997 -
10b
Wu J.Zhu Q.Wang L.Fathi R.Yang Z. J. Org. Chem. 2003, 68: 670 -
10c
Bellina F.Anselmi C.Martina F.Rossi R. Eur. J. Org. Chem. 2003, 2290 -
10d
Boukouvalas J.Pouliot M. Synlett 2005, 343 - In the absence of a β-substituent, stereoselectivities can vary both in magnitude and direction:
-
11a
Takayama H.Kuwajima T.Kitajima M.Nonato MG.Aimi N. Heterocycles 1999, 50: 75 -
11b
Takayama H.Ichikawa T.Kuwajima T.Kitajima M.Seki H.Aimi N.Nonato MG. J. Am. Chem. Soc. 2000, 122: 8635 -
11c
Barbosa LCA.Demuner AJ.de Alvarenga ES.Oliveira A.King-Diaz B.Lotina-Hennsen B. Pest Manag. Sci. 2006, 62: 214 - Bromine has previously performed this role in CBS-reduction and TADA reactions:
-
12a
Nicolaou KC.Bertinato AD.Piscopio AD.Chakraborty TK.Minowa N. Chem. Commun. 1993, 619 -
12b
He F.Bo Y.Altom JD.Corey EJ. J. Am. Chem. Soc. 1999, 121: 6771 -
12c
Parker KA.Fokas D. J. Org. Chem. 2006, 71: 449 -
12d
Frank SA.Roush WR. J. Org. Chem. 2002, 67: 4316 - 13
Jas G. Synthesis 1991, 965 -
14a
López CS.Álvarez R.Vaz B.Faza ON.de Lera R. J. Org. Chem. 2005, 70: 3654 -
14b
Boeckman RK.Pero JE.Boehmler DJ. J. Am. Chem. Soc. 2006, 128: 11032 - 16
Uenishi J.Kawahama R.Yonemitsu O.Tsuji J. J. Org. Chem. 1998, 63: 8965 -
18a
Negishi E.Xu C.Tan Z.Kotora M. Heterocycles 1997, 48: 209 ; and references cited therein -
18b
von der Ohe F.Brückner R. New J. Chem. 2000, 24: 659 -
18c
See also ref. 6b.
- 19
Xu D.Sharpless KB. Tetrahedron Lett. 1994, 35: 4685 - 22
Boukouvalas J.Côté S.Ndzi B. Tetrahedron Lett. 2007, 48: 105 ; and references cited therein - 23
Ma Z.Morris TW.Combrink KD. Ann. Rep. Med. Chem. 2004, 39: 197 - 24
Jones MB.Jani R.Ren D.Wood TK.Blaser MJ. J. Infect. Dis. 2005, 191: 1881
References and Notes
The major isomers (syn) of all aldol products described herein (5 and 10a-d) were clearly distinguished from their anti counterparts by the upfield shift of their γ-proton
(Δδ ≈ 0.2-0.3 ppm). Their stereochemistry was deduced by debromination of syn-10a/anti-10a to the corresponding butenolides syn-13a/anti-13a whose stereostructures were unambiguously assigned from the diagnostic shift of the β-proton
[5a]
(Scheme
[4]
).
Typical Procedure: To a solution of 8
[13]
(147 mg, 0. 903 mmol) in anhyd CH2Cl2 (3 mL) at 0 °C were successively added TBSOTf (207 µL, 0. 903 mmol) and Et3N (125 µL, 0. 903 mmol). The mixture was stirred for 30 min at 0 °C, then cooled to -78 °C, and then p-anisaldehyde (100 µL, 0.821 mmol) was added. After stirring at -78 °C for 1 h, DBU (251 µL, 1.64 mmol) was added and the resulting dark purple solution was allowed to warm to r.t. and stirred for an additional 1.5 h before quenching with 15% aq tartaric acid. The aqueous phase was extracted with CH2Cl2 (3 ×) and the combined organic layers were washed with sat. aq NaHCO3, dried over MgSO4 and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel; EtOAc-CH2Cl2-hexanes, 1:3:10) to afford 6b (196 mg, 85%) as a pale red-brown solid; mp 129-130 °C. 1H NMR (400 MHz, CDCl3): δ = 3.86 (s, 3 H), 6.33 (s, 1 H), 6.35 (s, 1 H), 6.95 (d, J = 8.6 Hz, 2 H), 7.79 (d, J = 8.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 55.2, 113.5, 114.3, 117.4, 124.8, 132.7, 138.1, 145.0, 160.9, 167.3. MS (CI): m/z = 281 [MH+]. Anal. Calcd for C12H9BrO3: C, 51.27; H, 3.23. Found: C, 51.29; H, 2.99.
Data for 6c: yellow solid; mp 138-139 °C. 1H NMR (400 MHz, CDCl3): δ = 2.55 (br d, J = 1.0 Hz, 3 H), 6.33 (s, 1 H), 6.55 (s, 1 H), 6.78 (dq, J = 3.7, 1.0 Hz, 1 H), 7.26 (d, J = 3.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 15.7, 107.6, 117.7, 126.6, 133.0, 133.5, 136.7, 144.2, 147.8, 166.8. MS (CI): m/z = 271 [MH+]. Anal. Calcd for C10H7BrO2S: C, 44.30; H, 2.60; S, 11.83. Found: C, 44.25; H, 2.43; S, 12.19.
Compounds 6a (white solid; mp 84-85 °C) and 6d (yellow oil) exhibited NMR data commensurate with those reported by Brückner.
[7a]
Silyloxyfuran 9 was prepared in 98% yield by silylation (TBSOTf, Et3N, CH2Cl2, r.t.) of the readily available β-bromo-α-methylbutenolide: Svendsen, J. S.; Sydnes, L. K. Acta Chem. Scand. 1990, 44, 202.
Data for 9: colorless oil. 1H NMR (300 MHz, CDCl3): δ = 0.22 (s, 6 H), 0.97 (s, 9 H), 1.80 (s, 3 H), 6.86 (s, 1 H).). 13C NMR (75 MHz, CDCl3): δ = -4.5, 7.4, 17.9, 25.4, 94.0, 104.3, 129.2, 152.4. HRMS (EI): m/z calcd for C11H19BrO2Si: 290.0338; found: 290.0331.
Data for 11a: orange oil. 1H NMR (400 MHz, CDCl3): δ = 0.93 (t, J = 7.3 Hz, 3 H), 1.37 (m, 2 H), 1.49 (m, 2 H), 2.41 (q, J = 7.6 Hz, 2 H), 5.62 (dt, J = 0.5, 8.0 Hz, 1 H), 6.34 (d, J = 0.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 13.7, 22.3, 26.1, 30.8, 117.3, 119.6, 136.9, 148.1, 167.0. HRMS (EI): m/z calcd for C9H11BrO2: 229.9942; found: 229.9938.
Data for 11b: orange oil. 1H NMR (300 MHz, CDCl3): δ = 0.90 (t, J = 7.1 Hz, 3 H), 1.31-1.50 (m, 4 H), 1.96 (s, 3 H), 2.37 (q, J = 7.4 Hz, 2 H), 5.47 (t, J = 7.9 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 10.2, 13.7, 22.3, 25.8, 31.0, 114.5, 128.1, 132.2, 147.0, 167.9. HRMS (EI): m/z calcd for C10H13BrO2: 244.099; found: 244.0098.
Data for 11c: yellow oil. 1H NMR (300 MHz, CDCl3): δ = 2.65 (m, 2 H), 2.72 (m, 2 H), 5.54 (t, J = 7.6 Hz, 1 H), 6.25 (s, 1 H), 7.11-7.25 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 28.0, 34.7, 115.7, 119.8, 126.2, 128.2, 128.4, 136.9, 140.3, 148.3, 166.8. HRMS (EI): m/z calcd for C13H11BrO2: 277.9942; found: 277.9938.
Data for 11d: white solid; mp 66-67 °C. 1H NMR (300 MHz, CDCl3): δ = 3.74 (d, J = 8.1 Hz, 2 H), 5.76 (t, J = 8.1 Hz, 1 H), 6.40 (s, 1 H), 7.22-7.36 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 32.6, 114.9, 120.3, 126.8, 128.6, 128.8, 137.1, 137.9, 148.2, 166.8. Anal. Calcd for C12H9BrO2: C, 54.55; H, 3.44. Found: C, 54.76; H, 3.53.
Data for 11e: white solid; mp 29-31 °C; [α]D
23 +32.5 (c = 1.03, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.40 (s, 3 H), 1.47 (s, 3 H), 3.73 (dd, J = 6.7, 8.2 Hz, 1 H), 4.23 (dd, J = 6.7, 8.2 Hz, 1 H), 5.12 (dt, J = 6.7, 8.2 Hz, 1 H), 5.64 (d, J = 8.2 Hz, 1 H), 6.43 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 25.4, 26.5, 69.0, 70.6, 110.0, 112.8, 121.2, 137.0, 148.9, 165.9. HRMS (CI): m/z calcd for C10H11BrO4: 274.9919; found: 274.9915.