References and Notes
<A NAME="RG33606ST-1A">1a</A>
Momose D.
Yamada Y.
Tetrahedron Lett.
1983,
24:
2669
<A NAME="RG33606ST-1B">1b</A>
Ueda Y.
Maynard SC.
Tetrahedron Lett.
1988,
29:
5197
<A NAME="RG33606ST-1C">1c</A>
Konopelski JP.
Boehler MA.
Tarasow TM.
J. Org. Chem.
1989,
54:
4966
<A NAME="RG33606ST-1D">1d</A>
Venturello C.
D’Aloisio R.
Synthesis
1985,
33
<A NAME="RG33606ST-1E">1e</A>
Righi G.
Bonini C.
Recent Res. Dev. Org. Chem.
1999,
3:
343
<A NAME="RG33606ST-1F">1f</A>
Righi G.
Chionne A.
D’Achille R.
Bonini C.
Tetrahedron: Asymmetry
1997,
8:
903
<A NAME="RG33606ST-1G">1g</A>
Ciaccio JA.
Heller E.
Talbot A.
Synlett
1991,
248
<A NAME="RG33606ST-1H">1h</A>
Overman LE.
Thompson AS.
J. Am. Chem. Soc.
1988,
110:
2248
<A NAME="RG33606ST-1I">1i</A>
Bird PR.
Chadha JS.
Tetrahedron Lett.
1966,
38:
4541
<A NAME="RG33606ST-1J">1j</A>
Martin JD.
Palazon JM.
Perez C.
Ravelo JL.
Pure Appl. Chem.
1986,
58:
395
<A NAME="RG33606ST-1K">1k</A>
Martin JD.
Perez C.
Ravelo JL.
J. Am. Chem. Soc.
1986,
108:
7801
<A NAME="RG33606ST-2">2</A>
Stamatov SD.
Stawinski J.
Tetrahedron Lett.
2006,
47:
2543
<A NAME="RG33606ST-3">3</A>
de Haas GH.
van Deenen LLM.
Recl. Trav. Chim. Pays-Bas
1961,
80:
951
<A NAME="RG33606ST-4">4</A>
Boguslavskaya LS.
Russ. Chem. Rev.
1972,
41:
740
<A NAME="RG33606ST-5A">5a</A>
Azzena F.
Calvani F.
Crotti P.
Gardelli C.
Macchia F.
Pineschi M.
Tetrahedron
1995,
51:
10601
<A NAME="RG33606ST-5B">5b</A>
Bajwa JS.
Anderson RC.
Tetrahedron Lett.
1991,
32:
3021
<A NAME="RG33606ST-5C">5c</A>
Righi G.
Pescatore G.
Bonadies F.
Bonini C.
Tetrahedron
2001,
57:
5649
<A NAME="RG33606ST-5D">5d</A>
Kotsuki H.
Shimanouchi T.
Ohshima R.
Fujiwara S.
Tetrahedron
1998,
54:
2709
<A NAME="RG33606ST-6">6</A>
Bartas-Yacoubou J.-M.
Maduike N.
Kyere S.
Doan L.
Whalen DL.
Tetrahedron Lett.
2002,
43:
3781
<A NAME="RG33606ST-7A">7a</A>
Onaka M.
Sugita K.
Takeuchi H.
Izumi Y.
J. Chem. Soc., Chem. Commun.
1988,
1173
<A NAME="RG33606ST-7B">7b</A>
Chini M.
Crotti P.
Gardelli C.
Macchia F.
Tetrahedron
1992,
48:
3805
<A NAME="RG33606ST-8A">8a</A>
Gao L.-X.
Murai A.
Chem. Lett.
1989,
357
<A NAME="RG33606ST-8B">8b</A>
Gao L.-X.
Murai A.
Chem. Lett.
1991,
1503
<A NAME="RG33606ST-9A">9a</A>
Konaklieva MI.
Dahl ML.
Turos E.
Tetrahedron Lett.
1992,
33:
7093
<A NAME="RG33606ST-9B">9b</A>
Sharghi H.
Eskandari MM.
Tetrahedron
2003,
59:
8509
<A NAME="RG33606ST-9C">9c</A>
Sharghi H.
Eskandari MM.
Ghavami R.
J. Mol. Catal. A: Chem.
2004,
215:
55
<A NAME="RG33606ST-9D">9d</A>
Sharghi H.
Eskandari MM.
Synthesis
2002,
1519
<A NAME="RG33606ST-10">10</A>
Bonini C.
Righi G.
Synthesis
1994,
225
<A NAME="RG33606ST-11A">11a</A>
Soroka M.
Goldeman W.
Malysa P.
Stochaj M.
Synthesis
2003,
2341
<A NAME="RG33606ST-11B">11b</A>
Solladie-Cavallo A.
Lupattelli P.
Marsol C.
Isarno T.
Bonini C.
Caruso L.
Maiorella A.
Eur. J. Org. Chem.
2002,
1439
<A NAME="RG33606ST-12A">12a</A>
Sabitha G.
Babu RS.
Rajkumar M.
Reddy CS.
Yadav JS.
Tetrahedron Lett.
2001,
42:
3955
<A NAME="RG33606ST-12B">12b</A>
Kwon DW.
Cho MS.
Kim YH.
Synlett
2003,
959
<A NAME="RG33606ST-13A">13a</A>
Tamami B.
Mahdavi H.
React. Funct. Polym.
2002,
51:
7
<A NAME="RG33606ST-13B">13b</A>
Niknam K.
Nasehi T.
Tetrahedron
2002,
58:
10259
<A NAME="RG33606ST-13C">13c</A>
Hara S.
Hoshio T.
Kameoka M.
Sawaguchi M.
Fukuhara T.
Yoneda N.
Tetrahedron
1999,
55:
4947
<A NAME="RG33606ST-13D">13d</A>
Sharghi H.
Naeimi H.
Synlett
1998,
1343
<A NAME="RG33606ST-14">14</A>
Leung W.-H.
Wong TKT.
Tran JCH.
Yeung L.-L.
Synlett
2000,
677
<A NAME="RG33606ST-15A">15a</A>
Kricheldorf HR.
Morber G.
Regel W.
Synthesis
1981,
383
<A NAME="RG33606ST-15B">15b</A>
Andrews GC.
Crawford TC.
Contillo LG.
Tetrahedron Lett.
1981,
22:
3803
<A NAME="RG33606ST-15C">15c</A>
Detty MR.
Seidler MD.
Tetrahedron Lett.
1982,
23:
2543
<A NAME="RG33606ST-15D">15d</A>
Iqbal J.
Amin Khan M.
Ahmad S.
Synth. Commun.
1989,
19:
641
<A NAME="RG33606ST-16">16</A>
Dodd GH.
Golding BT.
Ioannou PV.
J. Chem. Soc., Chem. Commun.
1975,
249
<A NAME="RG33606ST-17A">17a</A>
Lalonde M.
Chan TH.
Synthesis
1985,
817
<A NAME="RG33606ST-17B">17b</A>
Zhang W.
Robins MJ.
Tetrahedron Lett.
1992,
33:
1177
<A NAME="RG33606ST-17C">17c</A>
Bajwa JS.
Vivelo J.
Slade J.
Repic O.
Blacklock T.
Tetrahedron Lett.
2000,
41:
6021
<A NAME="RG33606ST-18A">18a</A>
Paltauf F.
Hermetter A.
Prog. Lipid Res.
1994,
33:
239
<A NAME="RG33606ST-18B">18b</A>
Serdarevich B.
J. Am. Oil Chem. Soc.
1967,
44:
381
<A NAME="RG33606ST-18C">18c</A>
Sjursnes BJ.
Anthonsen B.
Biocatalysis
1994,
9:
285
<A NAME="RG33606ST-19">19</A>
Ros A.
Magriz A.
Dietrich H.
Fernandez R.
Alvarez E.
Lassaletta JM.
Org. Lett.
2006,
8:
127
<A NAME="RG33606ST-20A">20a</A>
Stamatov SD.
Stawinski J.
Tetrahedron Lett.
2002,
43:
1759
<A NAME="RG33606ST-21A">21a</A>
Ganem B.
Small VR.
J. Org. Chem.
1974,
39:
3728
<A NAME="RG33606ST-21B">21b</A>
Danishefsky SJ.
Mantlo N.
J. Am. Chem. Soc.
1988,
110:
8129
<A NAME="RG33606ST-22">22</A>
Fuchs E.-F.
Lehmann J.
Chem. Ber.
1974,
107:
721
<A NAME="RG33606ST-23">23</A>
Kim S.
Lee WJ.
Synth. Commun.
1986,
16:
659
<A NAME="RG33606ST-24">24</A>
Oriyama T.
Oda M.
Gono J.
Koga G.
Tetrahedron Lett.
1994,
35:
2027
<A NAME="RG33606ST-25">25</A>
Stamatov SD.
Stawinski J.
Synlett
2005,
2587
<A NAME="RG33606ST-26">26</A>
Typical Procedure for the Conversion of the Silyl Ethers 1-4 into the Corresponding
Trifluoroacetate Derivatives 5-8 (Step A)
To a solution of silyl ether 1-4 (1.00 mmol) and tetra-n-butylammonium halide (2.00 mmol) in alcohol-free CH3Cl (5.0 mL), TFAA (0.278 mL, 2.00 mmol) was added and the reaction system was kept
under argon at r.t. for 4-5 h. CH3Cl and volatile reaction components were evaporated in vacuo, the residue was taken
in toluene (5.0 mL) and passed through a pad of silica gel (ca. 5 g) prepared in the
same solvent. The support was washed with toluene (ca. 100 mL), fractions containing
the target compounds were combined, the eluent was removed under reduced pressure,
and the residue was kept under high vacuum at r.t. for 2-3 h to afford trifluoro-acetate
5-8 in >90% yields (purity >99% by 1H NMR).
1-Oleoyl-2-trifluoroacetyl-3-chloro-sn-glycerol (5): obtained from 1 (0.447 g, 1.00 mmol) and Bu4NCl (0.556 g, 2.00 mmol) for 5 h. Yield 0.429 g (91%, colorless oil); R
f
= 0.66 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +0.28 (c 9.65, CHCl3). Anal. Calcd (%) for C23H38ClF3O4 (470.99): C, 58.65; H, 8.13; Cl, 7.53. Found: C, 58.61; H, 8.10; Cl, 7.53%.
1-Oleoyl-2-trifluoroacetyl-3-bromo-sn-glycerol (6): obtained from 2 (0.492 g, 1.00 mmol) and Bu4NBr (0.645 g, 2.00 mmol) for 4 h. Yield 0.490 g (95%, colorless oil); R
f
= 0.69 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +3.47 (c 8.05, CHCl3). Anal. Calcd (%) for C23H38BrF3O4 (515.44): C, 53.59; H, 7.43; Br, 15.50. Found: C, 53.62; H, 7.37; Br, 15.55.
1-Oleoyl-2-trifluoroacetyl-3-iodo-sn-glycerol (7): obtained from 3 (0.539 g, 1.00 mmol) and Bu4NI (0.739 g, 2.00 mmol) for 4 h. Yield 0.529 g (94%, colorless oil); R
f
= 0.70 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +6.40 (c 10.01, CHCl3). Anal. Calcd (%) for C23H38IF3O4 (562.44): C, 49.11; H, 6.81; I, 22.56%. Found: C, 49.10; H, 6.80; I, 22.59.
1-Benzoyl-2-trifluoroacetyl-3-bromo-rac-glycerol (8): obtained from 4 (0.331 g, 1.00 mmol) and Bu4NBr (0.645 g, 2.00 mmol) for 4 h. Yield 0.334 g (94%, colorless oil); R
f
= 0.59 (pentane-toluene-EtOAc, 40:50:10). Anal. Calcd (%) for C12H10BrF3O4 (355.10): C, 40.59; H, 2.84; Br, 22.50. Found: C, 40.57; H, 2.80; Br, 22.50.
<A NAME="RG33606ST-27">27</A>
Typical Procedure for the Conversion of Trifluoro-acetates 5-8 into the Corresponding
Halohydrin Derivatives 9-12 (Step B)
To a solution of trifluoroacetyl halohydrin 5-8 (1.00 mmol) in pentane-CH2Cl2 (3:1, v/v, 5.0 mL), a mixture of pyridine (0.8 mL, 10 mmol) and MeOH (10.1 mL, 250
mmol) in the same solvents (5.0 mL) was added at 0 °C and the reaction system was
left at r.t. for 20 min. Solvents were evaporated under reduced pressure (bath temp.
50 °C) and the residue was kept under high vacuum at r.t. for 2-3 h to afford the
deprotected haloalkanols 9-12 practically quantitatively (purity >99% by 1H NMR).
1-Oleoyl-3-chloro-sn-glycerol (9): obtained from 5 (0.471 g, 1.00 mmol). Yield 0.375 g (100%, colorless oil); R
f
= 0.32 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +3.00 (c 5.66, CHCl3). Anal. Calcd (%) for C21H39ClO3 (374.98): C, 67.26; H, 10.48; Cl, 9.45. Found: C, 67.30; H, 10.42; Cl, 9.42.
1-Oleoyl-3-bromo-sn-glycerol (10): obtained from 6 (0.515 g, 1.00 mmol). Yield 0.418 g (100%, colorless oil); R
f
= 0.33 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +2.45 (c 8.53, CHCl3). Anal. Calcd (%) for C21H39BrO3 (419.44): C, 60.13; H, 9.37; Br, 19.05. Found: C, 60.13; H, 9.42; Br, 19.10.
1-Oleoyl-3-iodo-sn-glycerol (11): obtained from 7 (0.562 g, 1.00 mmol). Yield 0.466 g (100%, white solid); R
f
= 0.36 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +2.39 (c 8.37, CHCl3); mp 33.0-33.6 °C; lit.
[3]
[α]D
20 +1.9 (c 10, CHCl3); mp 33.4 °C. Anal. Calcd (%) for C21H39IO3 (466.44): C, 54.07; H, 8.43; I, 27.21. Found: C, 54.15; H, 8.40; I, 27.27.
1-Benzoyl-3-bromo-rac-glycerol (12): obtained from 8 (0.355 g, 1.00 mmol). Yield 0.259 g (100%, colorless oil); R
f
= 0.32 (pentane-toluene-EtOAc, 40:50:10). Anal. Calcd (%) for C10H11BrO3 (259.10): C, 46.36; H, 4.28; Br, 30.84. Found: C, 46.42; H, 4.24; Br, 30.80.