References and Notes
1a
Momose D.
Yamada Y.
Tetrahedron Lett.
1983,
24:
2669
1b
Ueda Y.
Maynard SC.
Tetrahedron Lett.
1988,
29:
5197
1c
Konopelski JP.
Boehler MA.
Tarasow TM.
J. Org. Chem.
1989,
54:
4966
1d
Venturello C.
D’Aloisio R.
Synthesis
1985,
33
1e
Righi G.
Bonini C.
Recent Res. Dev. Org. Chem.
1999,
3:
343
1f
Righi G.
Chionne A.
D’Achille R.
Bonini C.
Tetrahedron: Asymmetry
1997,
8:
903
1g
Ciaccio JA.
Heller E.
Talbot A.
Synlett
1991,
248
1h
Overman LE.
Thompson AS.
J. Am. Chem. Soc.
1988,
110:
2248
1i
Bird PR.
Chadha JS.
Tetrahedron Lett.
1966,
38:
4541
1j
Martin JD.
Palazon JM.
Perez C.
Ravelo JL.
Pure Appl. Chem.
1986,
58:
395
1k
Martin JD.
Perez C.
Ravelo JL.
J. Am. Chem. Soc.
1986,
108:
7801
2
Stamatov SD.
Stawinski J.
Tetrahedron Lett.
2006,
47:
2543
3
de Haas GH.
van Deenen LLM.
Recl. Trav. Chim. Pays-Bas
1961,
80:
951
4
Boguslavskaya LS.
Russ. Chem. Rev.
1972,
41:
740
5a
Azzena F.
Calvani F.
Crotti P.
Gardelli C.
Macchia F.
Pineschi M.
Tetrahedron
1995,
51:
10601
5b
Bajwa JS.
Anderson RC.
Tetrahedron Lett.
1991,
32:
3021
5c
Righi G.
Pescatore G.
Bonadies F.
Bonini C.
Tetrahedron
2001,
57:
5649
5d
Kotsuki H.
Shimanouchi T.
Ohshima R.
Fujiwara S.
Tetrahedron
1998,
54:
2709
6
Bartas-Yacoubou J.-M.
Maduike N.
Kyere S.
Doan L.
Whalen DL.
Tetrahedron Lett.
2002,
43:
3781
7a
Onaka M.
Sugita K.
Takeuchi H.
Izumi Y.
J. Chem. Soc., Chem. Commun.
1988,
1173
7b
Chini M.
Crotti P.
Gardelli C.
Macchia F.
Tetrahedron
1992,
48:
3805
8a
Gao L.-X.
Murai A.
Chem. Lett.
1989,
357
8b
Gao L.-X.
Murai A.
Chem. Lett.
1991,
1503
9a
Konaklieva MI.
Dahl ML.
Turos E.
Tetrahedron Lett.
1992,
33:
7093
9b
Sharghi H.
Eskandari MM.
Tetrahedron
2003,
59:
8509
9c
Sharghi H.
Eskandari MM.
Ghavami R.
J. Mol. Catal. A: Chem.
2004,
215:
55
9d
Sharghi H.
Eskandari MM.
Synthesis
2002,
1519
10
Bonini C.
Righi G.
Synthesis
1994,
225
11a
Soroka M.
Goldeman W.
Malysa P.
Stochaj M.
Synthesis
2003,
2341
11b
Solladie-Cavallo A.
Lupattelli P.
Marsol C.
Isarno T.
Bonini C.
Caruso L.
Maiorella A.
Eur. J. Org. Chem.
2002,
1439
12a
Sabitha G.
Babu RS.
Rajkumar M.
Reddy CS.
Yadav JS.
Tetrahedron Lett.
2001,
42:
3955
12b
Kwon DW.
Cho MS.
Kim YH.
Synlett
2003,
959
13a
Tamami B.
Mahdavi H.
React. Funct. Polym.
2002,
51:
7
13b
Niknam K.
Nasehi T.
Tetrahedron
2002,
58:
10259
13c
Hara S.
Hoshio T.
Kameoka M.
Sawaguchi M.
Fukuhara T.
Yoneda N.
Tetrahedron
1999,
55:
4947
13d
Sharghi H.
Naeimi H.
Synlett
1998,
1343
14
Leung W.-H.
Wong TKT.
Tran JCH.
Yeung L.-L.
Synlett
2000,
677
15a
Kricheldorf HR.
Morber G.
Regel W.
Synthesis
1981,
383
15b
Andrews GC.
Crawford TC.
Contillo LG.
Tetrahedron Lett.
1981,
22:
3803
15c
Detty MR.
Seidler MD.
Tetrahedron Lett.
1982,
23:
2543
15d
Iqbal J.
Amin Khan M.
Ahmad S.
Synth. Commun.
1989,
19:
641
16
Dodd GH.
Golding BT.
Ioannou PV.
J. Chem. Soc., Chem. Commun.
1975,
249
17a
Lalonde M.
Chan TH.
Synthesis
1985,
817
17b
Zhang W.
Robins MJ.
Tetrahedron Lett.
1992,
33:
1177
17c
Bajwa JS.
Vivelo J.
Slade J.
Repic O.
Blacklock T.
Tetrahedron Lett.
2000,
41:
6021
18a
Paltauf F.
Hermetter A.
Prog. Lipid Res.
1994,
33:
239
18b
Serdarevich B.
J. Am. Oil Chem. Soc.
1967,
44:
381
18c
Sjursnes BJ.
Anthonsen B.
Biocatalysis
1994,
9:
285
19
Ros A.
Magriz A.
Dietrich H.
Fernandez R.
Alvarez E.
Lassaletta JM.
Org. Lett.
2006,
8:
127
20a
Stamatov SD.
Stawinski J.
Tetrahedron Lett.
2002,
43:
1759
21a
Ganem B.
Small VR.
J. Org. Chem.
1974,
39:
3728
21b
Danishefsky SJ.
Mantlo N.
J. Am. Chem. Soc.
1988,
110:
8129
22
Fuchs E.-F.
Lehmann J.
Chem. Ber.
1974,
107:
721
23
Kim S.
Lee WJ.
Synth. Commun.
1986,
16:
659
24
Oriyama T.
Oda M.
Gono J.
Koga G.
Tetrahedron Lett.
1994,
35:
2027
25
Stamatov SD.
Stawinski J.
Synlett
2005,
2587
26
Typical Procedure for the Conversion of the Silyl Ethers 1-4 into the Corresponding Trifluoroacetate Derivatives 5-8 (Step A)
To a solution of silyl ether 1-4 (1.00 mmol) and tetra-n-butylammonium halide (2.00 mmol) in alcohol-free CH3Cl (5.0 mL), TFAA (0.278 mL, 2.00 mmol) was added and the reaction system was kept under argon at r.t. for 4-5 h. CH3Cl and volatile reaction components were evaporated in vacuo, the residue was taken in toluene (5.0 mL) and passed through a pad of silica gel (ca. 5 g) prepared in the same solvent. The support was washed with toluene (ca. 100 mL), fractions containing the target compounds were combined, the eluent was removed under reduced pressure, and the residue was kept under high vacuum at r.t. for 2-3 h to afford trifluoro-acetate 5-8 in >90% yields (purity >99% by 1H NMR).
1-Oleoyl-2-trifluoroacetyl-3-chloro-sn-glycerol (5): obtained from 1 (0.447 g, 1.00 mmol) and Bu4NCl (0.556 g, 2.00 mmol) for 5 h. Yield 0.429 g (91%, colorless oil); R
f
= 0.66 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +0.28 (c 9.65, CHCl3). Anal. Calcd (%) for C23H38ClF3O4 (470.99): C, 58.65; H, 8.13; Cl, 7.53. Found: C, 58.61; H, 8.10; Cl, 7.53%.
1-Oleoyl-2-trifluoroacetyl-3-bromo-sn-glycerol (6): obtained from 2 (0.492 g, 1.00 mmol) and Bu4NBr (0.645 g, 2.00 mmol) for 4 h. Yield 0.490 g (95%, colorless oil); R
f
= 0.69 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +3.47 (c 8.05, CHCl3). Anal. Calcd (%) for C23H38BrF3O4 (515.44): C, 53.59; H, 7.43; Br, 15.50. Found: C, 53.62; H, 7.37; Br, 15.55.
1-Oleoyl-2-trifluoroacetyl-3-iodo-sn-glycerol (7): obtained from 3 (0.539 g, 1.00 mmol) and Bu4NI (0.739 g, 2.00 mmol) for 4 h. Yield 0.529 g (94%, colorless oil); R
f
= 0.70 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +6.40 (c 10.01, CHCl3). Anal. Calcd (%) for C23H38IF3O4 (562.44): C, 49.11; H, 6.81; I, 22.56%. Found: C, 49.10; H, 6.80; I, 22.59.
1-Benzoyl-2-trifluoroacetyl-3-bromo-rac-glycerol (8): obtained from 4 (0.331 g, 1.00 mmol) and Bu4NBr (0.645 g, 2.00 mmol) for 4 h. Yield 0.334 g (94%, colorless oil); R
f
= 0.59 (pentane-toluene-EtOAc, 40:50:10). Anal. Calcd (%) for C12H10BrF3O4 (355.10): C, 40.59; H, 2.84; Br, 22.50. Found: C, 40.57; H, 2.80; Br, 22.50.
27
Typical Procedure for the Conversion of Trifluoro-acetates 5-8 into the Corresponding Halohydrin Derivatives 9-12 (Step B)
To a solution of trifluoroacetyl halohydrin 5-8 (1.00 mmol) in pentane-CH2Cl2 (3:1, v/v, 5.0 mL), a mixture of pyridine (0.8 mL, 10 mmol) and MeOH (10.1 mL, 250 mmol) in the same solvents (5.0 mL) was added at 0 °C and the reaction system was left at r.t. for 20 min. Solvents were evaporated under reduced pressure (bath temp. 50 °C) and the residue was kept under high vacuum at r.t. for 2-3 h to afford the deprotected haloalkanols 9-12 practically quantitatively (purity >99% by 1H NMR).
1-Oleoyl-3-chloro-sn-glycerol (9): obtained from 5 (0.471 g, 1.00 mmol). Yield 0.375 g (100%, colorless oil); R
f
= 0.32 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +3.00 (c 5.66, CHCl3). Anal. Calcd (%) for C21H39ClO3 (374.98): C, 67.26; H, 10.48; Cl, 9.45. Found: C, 67.30; H, 10.42; Cl, 9.42.
1-Oleoyl-3-bromo-sn-glycerol (10): obtained from 6 (0.515 g, 1.00 mmol). Yield 0.418 g (100%, colorless oil); R
f
= 0.33 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +2.45 (c 8.53, CHCl3). Anal. Calcd (%) for C21H39BrO3 (419.44): C, 60.13; H, 9.37; Br, 19.05. Found: C, 60.13; H, 9.42; Br, 19.10.
1-Oleoyl-3-iodo-sn-glycerol (11): obtained from 7 (0.562 g, 1.00 mmol). Yield 0.466 g (100%, white solid); R
f
= 0.36 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +2.39 (c 8.37, CHCl3); mp 33.0-33.6 °C; lit.
[3]
[α]D
20 +1.9 (c 10, CHCl3); mp 33.4 °C. Anal. Calcd (%) for C21H39IO3 (466.44): C, 54.07; H, 8.43; I, 27.21. Found: C, 54.15; H, 8.40; I, 27.27.
1-Benzoyl-3-bromo-rac-glycerol (12): obtained from 8 (0.355 g, 1.00 mmol). Yield 0.259 g (100%, colorless oil); R
f
= 0.32 (pentane-toluene-EtOAc, 40:50:10). Anal. Calcd (%) for C10H11BrO3 (259.10): C, 46.36; H, 4.28; Br, 30.84. Found: C, 46.42; H, 4.24; Br, 30.80.