ABSTRACT
Platelets are the major cellular component of the hemostatic system that controls vessel and wound repair. However, platelets also have a variety of additional functions in inflammatory responses and host defense. The function and structure of the platelet was assumed to be very simple for a long period of time. With more modern tools of investigation such as cDNA arrays and proteomics, we have discovered a cell that is becoming a more sophisticated libero that functions in the classic mechanisms of white blood cells-inflammation and immunity.
KEYWORDS
Platelets - translation - proteomics - cDNA
REFERENCES
-
1 Lewin J. The Evolution of Mammalian Platelets. In: Michelson AD Platelets. New York; Academic Press 2002: 3-20
-
2
Heilmann C, Niemann S, Sinha B, Herrmann M, Kehrel B E, Peters G.
Staphylococcus aureus fibronectin-binding protein (FnBP)-mediated adherence to platelets, and aggregation of platelets induced by FnBPA but not by FnBPB.
J Infect Dis.
2004;
190(2)
321-329
-
3
Niemann S, Spehr N, Van Aken H et al..
Soluble fibrin is the main mediator of Staphylococcus aureus adhesion to platelets.
Circulation.
2004;
110(2)
193-200
-
4
Lindemann S W, Weyrich A S, Zimmerman G A.
Signaling to translational control pathways: diversity in gene regulation in inflammatory and vascular cells.
Trends Cardiovasc Med.
2005;
15(1)
9-17
-
5
Bizzozero G.
Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung.
Virchows Arch Pathol Anat Physiol.
1882;
90
261-332
-
6 Bizzozero G. Sul Midollo delle Ossa. Il Morgagni. Berlin, Germany; Virchow 1869
-
7
Wright J H.
The origin and nature of blood plates.
Boston Med Surg J .
1906;
154
643-645
-
8
Nagl W.
Polyploidy in differentiation and evolution.
Int J Cell Cloning.
1990;
8(4)
216-223
-
9 Nagl W. Functional significance of endo-cycles. Endopolyploidy and polysteny in Differentiation and Evolution. Amsterdam, The Netherlands; North Holland Publishing 2006: 154-157
-
10
Fantl P, Ward H A.
Comparison of blood clotting in marsupials and man.
Aust J Exp Biol Med Sci.
1957;
35(3)
209-223
-
11 Lewis J H. Comparative Hemostasis in Vertebrates. New York; Plenum Press 1996: 3-322
-
12
Ebbe S, Stohlman Jr F.
Megakaryocytopoiesis in the rat.
Blood.
1965;
26
20-35
-
13
Odell Jr T T, Jackson C W, Friday T J.
Megakaryocytopoiesis in rats with special reference to polyploidy.
Blood.
1970;
35(6)
775-782
-
14
Osim E E, Wyllie J H.
Loss of 5-hydroxytryptamine from mammalian circulating labelled platelets.
J Physiol.
1983;
340
77-90
-
15
Nakao K.
Membrane surface specialization of blood platelets and megakaryocytes.
Nature.
1968;
217
960-961
-
16
Pedersen N T.
The pulmonary vessels as a filter for circulating megakaryocytes in rats.
Scand J Haematol.
1974;
13(3)
225-231
-
17
Melamed M R, Cliffton E E, Mercer C, Koss L G.
The megakaryocyte blood count.
Am J Med Sci.
1966;
252(3)
301-309
-
18
Hansen M, Pedersen N T.
Circulating megakaryocytes in blood from the antecubital vein in healthy, adult humans.
Scand J Haematol.
1978;
20(4)
371-376
-
19
Hartwig J H, DeSisto M.
The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments.
J Cell Biol.
1991;
112(3)
407-425
-
20
Rosenberg S, Stracher A, Burridge K.
Isolation and characterization of a calcium-sensitive alpha-actinin-like protein from human platelet cytoskeletons.
J Biol Chem.
1981;
256(24)
12986-12991
-
21
Lindemann S, Tolley N D, Eyre J R, Kraiss L W, Mahoney T M, Weyrich A S.
Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets. A checkpoint for translational control.
J Biol Chem.
2001;
276(36)
33947-33951
-
22
Lindemann S, Tolley N D, Dixon D A et al..
Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis.
J Cell Biol.
2001;
154(3)
485-490
-
23
Weyrich A S, Dixon D A, Pabla R et al..
Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets.
Proc Natl Acad Sci USA.
1998;
95(10)
5556-5561
-
24
Hawrylowicz C M, Santoro S A, Platt F M, Unanue E R.
Activated platelets express IL-1 activity.
J Immunol.
1989;
143(12)
4015-4018
-
25
Pabla R, Weyrich A S, Dixon D A et al..
Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets.
J Cell Biol.
1999;
144(1)
175-184
-
26
Denis M M, Tolley N D, Bunting M et al..
Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets.
Cell.
2005;
122(3)
379-391
-
27
Lee J C, Laydon J T, McDonnell P C et al..
A protein kinase involved in the regulation of inflammatory cytokine biosynthesis.
Nature.
1994;
372(6508)
739-746
-
28
Dixon D A, Tolley N D, King P H et al..
Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells.
J Clin Invest.
2001;
108(11)
1657-1665
-
29
Dixon D A, Kaplan C D, McIntyre T M, Zimmerman G A, Prescott S M.
Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region.
J Biol Chem.
2000;
275(16)
11750-11757
-
30
Barry O P, Pratico D, Lawson J A, FitzGerald G A.
Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles.
J Clin Invest.
1997;
99(9)
2118-2127
-
31
Barry O P, Kazanietz M G, Pratico D, FitzGerald G A.
Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway.
J Biol Chem.
1999;
274(11)
7545-7556
-
32
Ravid K, Lu J, Zimmet J M, Jones M R.
Roads to polyploidy: the megakaryocyte example.
J Cell Physiol.
2002;
190(1)
7-20
-
33
McRedmond J P, Park S D, Reilly D F et al..
Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes.
Mol Cell Proteomics.
2004;
3(2)
133-144
-
34
Maguire P B, Moran N, Cagney G, Fitzgerald D J.
Application of proteomics to the study of platelet regulatory mechanisms.
Trends Cardiovasc Med.
2004;
14(6)
207-220
-
35
Maguire P B.
Platelet proteomics: identification of potential therapeutic targets.
Pathophysiol Haemost Thromb.
2003;
33(5-6)
481-486
-
36
O'Neill E E, Brock C J, von Kriegsheim A F et al..
Towards complete analysis of the platelet proteome.
Proteomics.
2002;
2(3)
288-305
-
37
Garcia B A, Smalley D M, Cho H, Shabanowitz J, Ley K, Hunt D F.
The platelet microparticle proteome.
J Proteome Res.
2005;
4(5)
1516-1521
-
38
Martens L, Van Damme P, Van Damme J et al..
The human platelet proteome mapped by peptide-centric proteomics: a functional protein profile.
Proteomics.
2005;
5(12)
3193-3204
-
39
Zellner M, Winkler W, Hayden H et al..
Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets.
Electrophoresis.
2005;
26(12)
2481-2489
Stephan LindemannM.D.
Medizinische Klinik III, Eberhard Karls Universität Tübingen
Otfried-Müller-Str. 10, D-72076 Tübingen, Germany
eMail: stephan.lindemann@med.uni-tuebingen.de