RSS-Feed abonnieren
DOI: 10.1055/s-2007-969027
The Active Platelet: Translation and Protein Synthesis in an Anucleate Cell
Publikationsverlauf
Publikationsdatum:
06. März 2007 (online)
ABSTRACT
Platelets are the major cellular component of the hemostatic system that controls vessel and wound repair. However, platelets also have a variety of additional functions in inflammatory responses and host defense. The function and structure of the platelet was assumed to be very simple for a long period of time. With more modern tools of investigation such as cDNA arrays and proteomics, we have discovered a cell that is becoming a more sophisticated libero that functions in the classic mechanisms of white blood cells-inflammation and immunity.
KEYWORDS
Platelets - translation - proteomics - cDNA
REFERENCES
-
1 Lewin J.
The Evolution of Mammalian Platelets . In: Michelson AD Platelets. New York; Academic Press 2002: 3-20 - 2 Heilmann C, Niemann S, Sinha B, Herrmann M, Kehrel B E, Peters G. Staphylococcus aureus fibronectin-binding protein (FnBP)-mediated adherence to platelets, and aggregation of platelets induced by FnBPA but not by FnBPB. J Infect Dis. 2004; 190(2) 321-329
- 3 Niemann S, Spehr N, Van Aken H et al.. Soluble fibrin is the main mediator of Staphylococcus aureus adhesion to platelets. Circulation. 2004; 110(2) 193-200
- 4 Lindemann S W, Weyrich A S, Zimmerman G A. Signaling to translational control pathways: diversity in gene regulation in inflammatory and vascular cells. Trends Cardiovasc Med. 2005; 15(1) 9-17
- 5 Bizzozero G. Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Virchows Arch Pathol Anat Physiol. 1882; 90 261-332
- 6 Bizzozero G. Sul Midollo delle Ossa. Il Morgagni. Berlin, Germany; Virchow 1869
- 7 Wright J H. The origin and nature of blood plates. Boston Med Surg J . 1906; 154 643-645
- 8 Nagl W. Polyploidy in differentiation and evolution. Int J Cell Cloning. 1990; 8(4) 216-223
- 9 Nagl W. Functional significance of endo-cycles. Endopolyploidy and polysteny in Differentiation and Evolution. Amsterdam, The Netherlands; North Holland Publishing 2006: 154-157
- 10 Fantl P, Ward H A. Comparison of blood clotting in marsupials and man. Aust J Exp Biol Med Sci. 1957; 35(3) 209-223
- 11 Lewis J H. Comparative Hemostasis in Vertebrates. New York; Plenum Press 1996: 3-322
- 12 Ebbe S, Stohlman Jr F. Megakaryocytopoiesis in the rat. Blood. 1965; 26 20-35
- 13 Odell Jr T T, Jackson C W, Friday T J. Megakaryocytopoiesis in rats with special reference to polyploidy. Blood. 1970; 35(6) 775-782
- 14 Osim E E, Wyllie J H. Loss of 5-hydroxytryptamine from mammalian circulating labelled platelets. J Physiol. 1983; 340 77-90
- 15 Nakao K. Membrane surface specialization of blood platelets and megakaryocytes. Nature. 1968; 217 960-961
- 16 Pedersen N T. The pulmonary vessels as a filter for circulating megakaryocytes in rats. Scand J Haematol. 1974; 13(3) 225-231
- 17 Melamed M R, Cliffton E E, Mercer C, Koss L G. The megakaryocyte blood count. Am J Med Sci. 1966; 252(3) 301-309
- 18 Hansen M, Pedersen N T. Circulating megakaryocytes in blood from the antecubital vein in healthy, adult humans. Scand J Haematol. 1978; 20(4) 371-376
- 19 Hartwig J H, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol. 1991; 112(3) 407-425
- 20 Rosenberg S, Stracher A, Burridge K. Isolation and characterization of a calcium-sensitive alpha-actinin-like protein from human platelet cytoskeletons. J Biol Chem. 1981; 256(24) 12986-12991
- 21 Lindemann S, Tolley N D, Eyre J R, Kraiss L W, Mahoney T M, Weyrich A S. Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets. A checkpoint for translational control. J Biol Chem. 2001; 276(36) 33947-33951
- 22 Lindemann S, Tolley N D, Dixon D A et al.. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol. 2001; 154(3) 485-490
- 23 Weyrich A S, Dixon D A, Pabla R et al.. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci USA. 1998; 95(10) 5556-5561
- 24 Hawrylowicz C M, Santoro S A, Platt F M, Unanue E R. Activated platelets express IL-1 activity. J Immunol. 1989; 143(12) 4015-4018
- 25 Pabla R, Weyrich A S, Dixon D A et al.. Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets. J Cell Biol. 1999; 144(1) 175-184
- 26 Denis M M, Tolley N D, Bunting M et al.. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005; 122(3) 379-391
- 27 Lee J C, Laydon J T, McDonnell P C et al.. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994; 372(6508) 739-746
- 28 Dixon D A, Tolley N D, King P H et al.. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest. 2001; 108(11) 1657-1665
- 29 Dixon D A, Kaplan C D, McIntyre T M, Zimmerman G A, Prescott S M. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. J Biol Chem. 2000; 275(16) 11750-11757
- 30 Barry O P, Pratico D, Lawson J A, FitzGerald G A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest. 1997; 99(9) 2118-2127
- 31 Barry O P, Kazanietz M G, Pratico D, FitzGerald G A. Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J Biol Chem. 1999; 274(11) 7545-7556
- 32 Ravid K, Lu J, Zimmet J M, Jones M R. Roads to polyploidy: the megakaryocyte example. J Cell Physiol. 2002; 190(1) 7-20
- 33 McRedmond J P, Park S D, Reilly D F et al.. Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics. 2004; 3(2) 133-144
- 34 Maguire P B, Moran N, Cagney G, Fitzgerald D J. Application of proteomics to the study of platelet regulatory mechanisms. Trends Cardiovasc Med. 2004; 14(6) 207-220
- 35 Maguire P B. Platelet proteomics: identification of potential therapeutic targets. Pathophysiol Haemost Thromb. 2003; 33(5-6) 481-486
- 36 O'Neill E E, Brock C J, von Kriegsheim A F et al.. Towards complete analysis of the platelet proteome. Proteomics. 2002; 2(3) 288-305
- 37 Garcia B A, Smalley D M, Cho H, Shabanowitz J, Ley K, Hunt D F. The platelet microparticle proteome. J Proteome Res. 2005; 4(5) 1516-1521
- 38 Martens L, Van Damme P, Van Damme J et al.. The human platelet proteome mapped by peptide-centric proteomics: a functional protein profile. Proteomics. 2005; 5(12) 3193-3204
- 39 Zellner M, Winkler W, Hayden H et al.. Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets. Electrophoresis. 2005; 26(12) 2481-2489
Stephan LindemannM.D.
Medizinische Klinik III, Eberhard Karls Universität Tübingen
Otfried-Müller-Str. 10, D-72076 Tübingen, Germany
eMail: stephan.lindemann@med.uni-tuebingen.de