Semin Thromb Hemost 2007; 33(2): 144-150
DOI: 10.1055/s-2007-969027
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Active Platelet: Translation and Protein Synthesis in an Anucleate Cell

Stephan Lindemann1 , Meinrad Gawaz1
  • 1Medizinische Klinik III, Eberhard Karls-Universität Tübingen, Tübingen, Germany
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
06. März 2007 (online)

ABSTRACT

Platelets are the major cellular component of the hemostatic system that controls vessel and wound repair. However, platelets also have a variety of additional functions in inflammatory responses and host defense. The function and structure of the platelet was assumed to be very simple for a long period of time. With more modern tools of investigation such as cDNA arrays and proteomics, we have discovered a cell that is becoming a more sophisticated libero that functions in the classic mechanisms of white blood cells-inflammation and immunity.

REFERENCES

  • 1 Lewin J. The Evolution of Mammalian Platelets. In: Michelson AD Platelets. New York; Academic Press 2002: 3-20
  • 2 Heilmann C, Niemann S, Sinha B, Herrmann M, Kehrel B E, Peters G. Staphylococcus aureus fibronectin-binding protein (FnBP)-mediated adherence to platelets, and aggregation of platelets induced by FnBPA but not by FnBPB.  J Infect Dis. 2004;  190(2) 321-329
  • 3 Niemann S, Spehr N, Van Aken H et al.. Soluble fibrin is the main mediator of Staphylococcus aureus adhesion to platelets.  Circulation. 2004;  110(2) 193-200
  • 4 Lindemann S W, Weyrich A S, Zimmerman G A. Signaling to translational control pathways: diversity in gene regulation in inflammatory and vascular cells.  Trends Cardiovasc Med. 2005;  15(1) 9-17
  • 5 Bizzozero G. Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung.  Virchows Arch Pathol Anat Physiol. 1882;  90 261-332
  • 6 Bizzozero G. Sul Midollo delle Ossa. Il Morgagni. Berlin, Germany; Virchow 1869
  • 7 Wright J H. The origin and nature of blood plates.  Boston Med Surg J . 1906;  154 643-645
  • 8 Nagl W. Polyploidy in differentiation and evolution.  Int J Cell Cloning. 1990;  8(4) 216-223
  • 9 Nagl W. Functional significance of endo-cycles. Endopolyploidy and polysteny in Differentiation and Evolution. Amsterdam, The Netherlands; North Holland Publishing 2006: 154-157
  • 10 Fantl P, Ward H A. Comparison of blood clotting in marsupials and man.  Aust J Exp Biol Med Sci. 1957;  35(3) 209-223
  • 11 Lewis J H. Comparative Hemostasis in Vertebrates. New York; Plenum Press 1996: 3-322
  • 12 Ebbe S, Stohlman Jr F. Megakaryocytopoiesis in the rat.  Blood. 1965;  26 20-35
  • 13 Odell Jr T T, Jackson C W, Friday T J. Megakaryocytopoiesis in rats with special reference to polyploidy.  Blood. 1970;  35(6) 775-782
  • 14 Osim E E, Wyllie J H. Loss of 5-hydroxytryptamine from mammalian circulating labelled platelets.  J Physiol. 1983;  340 77-90
  • 15 Nakao K. Membrane surface specialization of blood platelets and megakaryocytes.  Nature. 1968;  217 960-961
  • 16 Pedersen N T. The pulmonary vessels as a filter for circulating megakaryocytes in rats.  Scand J Haematol. 1974;  13(3) 225-231
  • 17 Melamed M R, Cliffton E E, Mercer C, Koss L G. The megakaryocyte blood count.  Am J Med Sci. 1966;  252(3) 301-309
  • 18 Hansen M, Pedersen N T. Circulating megakaryocytes in blood from the antecubital vein in healthy, adult humans.  Scand J Haematol. 1978;  20(4) 371-376
  • 19 Hartwig J H, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments.  J Cell Biol. 1991;  112(3) 407-425
  • 20 Rosenberg S, Stracher A, Burridge K. Isolation and characterization of a calcium-sensitive alpha-actinin-like protein from human platelet cytoskeletons.  J Biol Chem. 1981;  256(24) 12986-12991
  • 21 Lindemann S, Tolley N D, Eyre J R, Kraiss L W, Mahoney T M, Weyrich A S. Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets. A checkpoint for translational control.  J Biol Chem. 2001;  276(36) 33947-33951
  • 22 Lindemann S, Tolley N D, Dixon D A et al.. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis.  J Cell Biol. 2001;  154(3) 485-490
  • 23 Weyrich A S, Dixon D A, Pabla R et al.. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets.  Proc Natl Acad Sci USA. 1998;  95(10) 5556-5561
  • 24 Hawrylowicz C M, Santoro S A, Platt F M, Unanue E R. Activated platelets express IL-1 activity.  J Immunol. 1989;  143(12) 4015-4018
  • 25 Pabla R, Weyrich A S, Dixon D A et al.. Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets.  J Cell Biol. 1999;  144(1) 175-184
  • 26 Denis M M, Tolley N D, Bunting M et al.. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets.  Cell. 2005;  122(3) 379-391
  • 27 Lee J C, Laydon J T, McDonnell P C et al.. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis.  Nature. 1994;  372(6508) 739-746
  • 28 Dixon D A, Tolley N D, King P H et al.. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells.  J Clin Invest. 2001;  108(11) 1657-1665
  • 29 Dixon D A, Kaplan C D, McIntyre T M, Zimmerman G A, Prescott S M. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region.  J Biol Chem. 2000;  275(16) 11750-11757
  • 30 Barry O P, Pratico D, Lawson J A, FitzGerald G A. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles.  J Clin Invest. 1997;  99(9) 2118-2127
  • 31 Barry O P, Kazanietz M G, Pratico D, FitzGerald G A. Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway.  J Biol Chem. 1999;  274(11) 7545-7556
  • 32 Ravid K, Lu J, Zimmet J M, Jones M R. Roads to polyploidy: the megakaryocyte example.  J Cell Physiol. 2002;  190(1) 7-20
  • 33 McRedmond J P, Park S D, Reilly D F et al.. Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes.  Mol Cell Proteomics. 2004;  3(2) 133-144
  • 34 Maguire P B, Moran N, Cagney G, Fitzgerald D J. Application of proteomics to the study of platelet regulatory mechanisms.  Trends Cardiovasc Med. 2004;  14(6) 207-220
  • 35 Maguire P B. Platelet proteomics: identification of potential therapeutic targets.  Pathophysiol Haemost Thromb. 2003;  33(5-6) 481-486
  • 36 O'Neill E E, Brock C J, von Kriegsheim A F et al.. Towards complete analysis of the platelet proteome.  Proteomics. 2002;  2(3) 288-305
  • 37 Garcia B A, Smalley D M, Cho H, Shabanowitz J, Ley K, Hunt D F. The platelet microparticle proteome.  J Proteome Res. 2005;  4(5) 1516-1521
  • 38 Martens L, Van Damme P, Van Damme J et al.. The human platelet proteome mapped by peptide-centric proteomics: a functional protein profile.  Proteomics. 2005;  5(12) 3193-3204
  • 39 Zellner M, Winkler W, Hayden H et al.. Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets.  Electrophoresis. 2005;  26(12) 2481-2489

Stephan LindemannM.D. 

Medizinische Klinik III, Eberhard Karls Universität Tübingen

Otfried-Müller-Str. 10, D-72076 Tübingen, Germany

eMail: stephan.lindemann@med.uni-tuebingen.de