References and Notes
1a
O’Hagan D.
Nat. Prod. Rep.
2000,
17:
435 ; and references therein
1b
Daly JW.
Spande TF.
Garraffo HM.
J. Nat. Prod.
2005,
68:
1556
2a
Whitesell JK.
Chem. Rev.
1989,
89:
1581
2b
White JD.
Xu Q.
Lee C.-S.
Valeriote FA.
Org. Biomol. Chem.
2004,
2:
2092
3a
Fache F.
Schulz E.
Tommasino ML.
Lernaire M.
Chem. Rev.
2000,
100:
2159
3b
Hoang L.
Bahmanyar S.
Houk KN.
List B.
J. Am. Chem. Soc.
2003,
125:
16
3c
Chiral Reagents for Asymmetric Synthesis
Paquette LA.
Wiley;
Chichester:
2003.
3d
Rogers CJ.
Dickerson TJ.
Brogan AP.
Janda KD.
J. Org. Chem.
2005,
70:
3705
4a
Pichon M.
Figadere B.
Tetrahedron: Asymmetry
1996,
7:
927 ; and references therein
4b
Katritzky AR.
Cui X.-L.
Yang B.
Steel PJ.
J. Org. Chem.
1999,
64:
1979
4c
Besev M.
Engman L.
Org. Lett.
2002,
4:
3023
5a
Coldham I.
Hufton R.
Tetrahedron Lett.
1995,
36:
2157
5b
Pedrosa R.
Andres C.
Duque-Soldana JP.
Mendiguchia P.
Eur. J. Org. Chem.
2000,
3727
5c
Bustos F.
Gorgojo JM.
Suero R.
Aurrecoechea JM.
Tetrahedron
2002,
58:
6837
5d
Bajracharya GB.
Huo Z.
Yamamoto Y.
J. Org. Chem.
2005,
70:
4883
5e
Bexrud JA.
Beard JD.
Leitch DC.
Schafer LL.
Org. Lett.
2005,
7:
1959
5f
Kim JY.
Livinghouse T.
Org. Lett.
2005,
7:
1737
5g
Karanjule NS.
Markad SD.
Shinde VS.
Dhavale DD.
J. Org. Chem.
2006,
71:
4667
For rhodium carbenoid N-H insertion reaction, see:
6a
Salzmann TN.
Ratcliffe RW.
Christensen BG.
Bouffard FA.
J. Am. Chem. Soc.
1980,
102:
6161
6b
Moyer MP.
Feldman PL.
Rapoport H.
J. Org. Chem.
1985,
50:
5223
6c
Ye T.
McKervey MA.
Chem. Rev.
1994,
94:
1091
6d
Garcia CF.
McKervey MA.
Ye T.
Chem. Commun.
1996,
1465
6e
Padwa A.
Weingarten MD.
Chem. Rev.
1996,
96:
223
6f
Doyle MP.
McKervey MA.
Chem. Commun.
1997,
983
6g
Doyle MP.
McKervey MA.
Ye T.
Modern Catalytic Methods for Organic Synthesis with Diazo Compounds
Wiley-Interscience;
New York:
1998.
6h
Wang J.
Hou Y.
Wu P.
J. Chem. Soc., Perkin Trans. 1
1999,
2277
6i
Yang H.
Jurkauskas V.
Mackintosh N.
Mogren T.
Stephenson CRJ.
Foster K.
Brown W.
Roberts E.
Can. J. Chem.
2000,
78:
800
6j
Davies HML.
Beckwith REJ.
Chem. Rev.
2003,
103:
2861
6k
Davis FA.
Fang T.
Goswami R.
Org. Lett.
2002,
4:
1599
6l
Lee S.-H.
Clapham B.
Koch G.
Zimmermann J.
Janda KD.
J. Comb. Chem.
2003,
5:
188
For rhodium carbenoid N-H insertion of phosphonate, see:
6m
Moody CJ.
Swann E.
Ferris L.
Haigh D.
Chem. Commun.
1997,
2391
6n
Moody CJ.
Morfitt CN.
Slawin AMZ.
Tetrahedron: Asymmetry
2001,
12:
1657
6o
Nakamura Y.
Ukita T.
Org. Lett.
2002,
4:
2317
6p
Davis FA.
Wu Y.
Xu H.
Zhang J.
Org. Lett.
2004,
6:
4523 ; and references therein
7a
Dhavale DD.
Bhujbal NN.
Joshi P.
Desai SG.
Carbohydr. Res.
1994,
263:
303
7b
Desai VN.
Saha NN.
Dhavale DD.
J. Chem. Soc., Perkin Trans. 1
2000,
147
7c
Karche NP.
Jachak SM.
Dhavale DD.
J. Org. Chem.
2001,
66:
6323
8
Karche NP.
Jachak SM.
Dhavale DD.
J. Org. Chem.
2003,
68:
4531
For pyrrolidine alkaloids, see:
9a
Chaudhari VD.
Ajish Kumar KS.
Dhavale DD.
Tetrahedron Lett.
2004,
45:
8363
9b
Dhavale DD.
Ajish Kumar KS.
Chaudhari VD.
Sharma T.
Sabharwal SG.
PrakashaReddy J.
Org. Biomol. Chem.
2005,
3:
3720
9c
Dhavale DD.
Matin MM.
Sharma T.
Sabharwal SG.
Bioorg. Med. Chem.
2003,
11:
3295 ; and references therein
For piperidine and azepane alkaloids see:
9d
Dhavale DD.
Markad SD.
Karanjule NS.
PrakashaReddy J.
J. Org. Chem.
2004,
69:
4760
9e
Markad SD.
Karanjule NS.
Sharma T.
Sabharwal SG.
Dhavale DD.
Bioorg. Med. Chem.
2006,
14:
5535 ; and references therein
10a
Evans SV.
Fellows LE.
Shing TKM.
Fleet GWJ.
Phytochemistry
1985,
24:
1953
10b
Asano N.
Kato A.
Miyauchi M.
Kizu H.
Kameda Y.
Watson AA.
Nash RJ.
Fleet GWJ.
J. Nat. Prod.
1998,
61:
625
11
Legler G. In Iminosugars as Glycosidase Inhibitors
Stütz AE.
Wiley-VCH;
Weinheim, Germany:
1999.
p.31
12
Watson AA.
Nash RJ.
Wormald MR.
Harvey DJ.
Dealler S.
Lees E.
Asano N.
Kizu H.
Kato A.
Griffiths RC.
Cairns AJ.
Fleet GWJ.
Phytochemistry
1997,
46:
255
13
Yamashita T.
Yasuda K.
Kizu H.
Kameda Y.
Watson AA.
Nash RJ.
Fleet GWJ.
Asano N.
J. Nat. Prod.
2002,
65:
1875
14a
Legler G.
Adv. Carbohydr. Chem. Biochem.
1990,
48:
319
14b
Look GC.
Fotsch CH.
Wong CH.
Acc. Chem. Res.
1993,
26:
182
15a
Izquierdo I.
Plaza MT.
Franco F.
Tetrahedron: Asymmetry
2004,
15:
1465
15b
Izquierdo I.
Plaza MT.
Tamayo JA.
Tetrahedron
2005,
61:
6527
16a
Gouverneur V.
Ghosez L.
Tetrahedron: Asymmetry
1990,
1:
363
16b
Gouverneur V.
Ghosez L.
Tetrahedron Lett.
1991,
32:
5349
16c
Masaki Y.
Oda H.
Kazuta K.
Usai A.
Itoh A.
Xu F.
Tetrahedron Lett.
1992,
33:
5089
16d
Shi M.
Satoh Y.
Makihara T.
Masaki Y.
Tetrahedron: Asymmetry
1995,
6:
2109
17a
Wang Y.-F.
Takaoka Y.
Wong C.-H.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1242
18
Chen H.
Guo Z.
Liu H.-W.
J. Am. Chem. Soc.
1998,
120:
9951
19 The synthesis of α-d-ribopentodialdose is known, however that of α-d-xylopentodialdose is unknown.
20 The formation of 10 as a major product in 94% yield could be explained on the basis of the hydride delivery in LiAlH4, reducing from the convex face; the concave face attack of hydride afforded the corresponding C-5 epimeric compound in 6% yield as a minor product as evident from the 1H and 13C NMR spectral data.
21 Perbenzylation at room temperature under a variety of reaction conditions for prolonged time afforded a mixture of mono-, di- and tribenzylated products.
22 The NaBH4 (2.5 equiv) reduction of an anomeric mixture of hemiacetal was sluggish and led to only 50% conversion into the corresponding alcohol. Use of an excess amount of NaBH4 did not improve the yield of the product.
23a
Fechter MH.
Stutz AE.
Carbohydr. Res.
1999,
319:
55
23b
Singh S.
Han H.
Tetrahedron Lett.
2004,
45:
6349
23c
Izquierdo I.
Plaza MT.
Rodríguez M.
Tamayo JA.
Martos A.
Tetrahedron
2006,
62:
2693
23d
Chikkanna D.
Han H.
Synlett
2004,
2311
24 All new compounds have been characterized by 1H NMR, 13C NMR, IR, and elemental analysis. Ethyl-3,6-dideoxy-3-benzyloxycarbonylamino-1,2-
O
-isopropylidene-α-
d
-xylohept-5-ulofuranuronate (
7): viscous liquid; R
f
0.65 (n-hexane-EtOAc, 5:1); [α]D +3.33 (c = 0.60, CHCl3). IR (neat): 3150-3400(br), 1730, 1650 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.26 (t, J = 7.4 Hz, 3 H), 1.30 (s, 3 H), 1.50 (s, 3 H), 3.40 (d, J = 16.0 Hz, 1 H), 3.75 (d, J = 16.0 Hz, 1 H), 4.18 (q, J = 7.4 Hz, 2 H), 4.50-4.62 (br m, 2 H), 4.89 (d, J = 3.3 Hz, 1 H), 5.08 (AB quartet, J = 12.0 Hz, 2 H), 5.86 (d, J = 3.6 Hz, 1 H), 5.89 (d, J = 3.3 Hz, 1 H), 7.20-7.40 (br s, 5 H). 13C NMR (75 MHz, CDCl3): δ = 14.0, 26.1, 26.7, 46.8, 58.0, 61.7, 66.9, 83.5, 84.3, 104.7, 112.5, 127.8, 127.9, 128.3, 128.4, 135.9, 155.5, 167.3, 199.4. The 1H and 13C NMR spectrum showed additional signals (<5%) corresponding to the enol form of the β-ketoester. Anal. Calcd for C20H25NO8 (407.41): C, 58.96; H, 6.18. Found: C, 58.82; H, 6.12.
Ethyl-3,6-dideoxy-6-diazo-3-benzyloxycarbonylamino-1,2-
O
-isopropylidene-α-
d
-xylohept-5-ulofuranuronate (
8): yield: 87%; viscous liquid; R
f
0.60 (n-hexane-EtOAc, 5:1); [α]D +44.00 (c = 0.5, CHCl3). IR (neat): 3150-3330, 2146, 1716, 1658 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.38 (t, J = 6.9 Hz, 3 H), 1.35 (s, 3 H), 1.59 (s, 3 H), 4.32 (q, J = 6.9 Hz, 2 H), 4.57 (d, J = 3.3 Hz, 1 H), 4.67 [(dd, J = 3.6, 8.7 Hz, 1 H); on D2O exchange became (d, J = 3.6 Hz)], 5.05 (s, 2 H), 5.22 (br d, J = 8.7 Hz, 1 H, exchanges with D2O), 5.69 (d, J = 3.6 Hz, 1 H), 5.97 (d, J = 3.3 Hz, 1 H), 7.20-7.40 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 14.6, 26.6, 27.1, 58.3, 62.4, 67.2, 80.0, 84.8, 104.6, 112.8, 128.1, 128.3, 128.7, 136.2, 155.6, 160.5, 186.1. In the 13C NMR the C5 carbon did not appear due to the presence of C=N2. This is analogous to the earlier observation reported by Davis.
[2]
Anal. Calcd for C20H23N3O8 (433.15): C, 55.42; H, 5.35. Found: C, 55.32; H, 5.32.
Preparation of Ethyl-3,6-dideoxy-3,6-benzyloxy-carbonylamino-1,2-
O
-isopropylidine-α-
d
-xylohept-5-ulofuranuronate (
9): To the solution of the diazo com-pound 8 (1.00 g, 2.30 mmol) in anhyd benzene (5 mL) was added Rh2(OAc)4 (0.03g, 0.04 mmol) under nitrogen atmosphere and the solution was refluxed for 20 min. On cooling, the reaction mixture was directly loaded on a silica gel column and eluted (n-hexane-EtOAc, 7:3) to give 9 as a viscous liquid (0.73 g, 78%); R
f
0.50 (n-hexane-EtOAc, 3:2); [α]D +10.00 (c = 0.8, CHCl3). IR (neat): 3150-3421 (br), 1750, 1660 cm-1. Anal. Calcd for C20H23NO8 (405):
C, 59.25; H, 5.72. Found: C, 59.27; H, 5.68. The 1H and 13C NMR spectra of this compound showed complex patterns due to keto-enol tautomerism and doubling of signals associated with the NCbz functionality.
3,6-Dideoxy-3,6-(
N
-benzylamino)-5,7-di-
O
-benzyl-1,2-
O
-isopropylidene-α-
d
-glycero-d-glucohepto-1,4-furanose (
10): yield: 68%; white solid; mp 96-97 °C; R
f
0.70 (n-hexane-EtOAc, 19:1); [α]D +48.57 (c = 0.7, CHCl3). IR (KBr): 1452, 1369, 1124, 1074, 698 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.23 (s, 3 H), 1.45 (s, 3 H), 3.21 (ddd, app q, J = 5.7, 6.3, 6.6 Hz, 1 H), 3.39 (d, J = 5.4 Hz, 1 H), 3.55 (dd, J = 6.3, 9.3 Hz, 1 H), 3.80 (dd, J = 5.7, 9.3 Hz, 1 H), 3.83 (d, J = 14.0 Hz, 1 H), 3.93 (dd, J = 4.8, 6.6 Hz, 1 H), 4.00 (d, J = 14.0 Hz, 1 H), 4.15 (d, J = 3.6 Hz, 1 H), 4.45 (AB q, J = 12.0 Hz, 2 H), 4.53 (d, J = 12.0 Hz, 1 H), 4.75 (d, J = 12.0 Hz, 1 H), 4.78 (dd, J = 4.8, 5.4 Hz, 1 H), 5.85 (d, J = 3.6 Hz, 1 H), 7.20-7.40 (m, 15 H). 13C NMR (75 MHz, CDCl3): δ = 26.6, 27.5, 57.7, 65.0, 70.8, 71.3, 72.7, 73.2, 78.0, 82.3, 84.8, 107.2, 112.0, 127.0, 127.3, 127.5, 127.7, 128.1, 129.2, 137.7, 138.0, 138.3. Anal. Calcd for C31H35NO5 (501.61): C, 74.23; H, 7.03. Found: C, 74.22; H, 7.00.
2,5-Dideoxy-2,5-imino-1,3-di-
O
-benzyl-l-glycero-α-
d
-galactoheptitol (
11): yield: 81%; viscous liquid; R
f
0.40 (n-hexane-EtOAc, 9:1); [α]D +3.07 (c = 0.65, CHCl3). IR (neat): 3100-3550, 1639, 1456, 1369 cm-1. 1H NMR (300 MHz, CDCl3 + D2O): δ = 3.02-3.12 (m, 2 H, H-3), 3.16 (ddd, J = 2.1, 4.2, 8.1 Hz, 1 H), 3.36 (dd, J = 2.7, 9.3 Hz, 1 H), 3.58 (d, J = 13.5 Hz, 1 H), 3.66 (dd, J = 4.5, 11.4 Hz, 1 H), 3.77 (dd, J = 4.5, 11.4 Hz, 1 H), 3.96 (ddd, app q, J = 4.5, 4.8, 9.6 Hz, 1 H), 4.01 (d, J = 13.5 Hz, 1 H), 4.05 (dd, J = 4.8, 8.1 Hz, 1 H), 4.22 (dd, J = 4.8, 5.1 Hz, 1 H), 4.44 (AB q, J = 12.0 Hz, 2 H), 4.45 (d, J = 11.7 Hz, 1 H), 4.68 (d, J = 11.7 Hz, 1 H), 7.20-7.40 (m, 15 H). 13C NMR (75 MHz, CDCl3 + D2O): δ = 60.3, 63.3, 64.8, 67.1, 68.4, 69.4, 69.9, 71.9, 73.5, 77.7, 127.2, 127.5, 127.6, 127.7, 128.3, 129.7, 137.0, 137.7, 138.5. Anal. Calcd for C28H33NO5 (463.57): C, 72.55; H, 7.18. Found: C, 72.49; H, 7.15.
2,5-Dideoxy-2,5-imino-l-glycero-α-
d
-galactoheptitol (
12): yield: 85%; viscous liquid; R
f
0.10 (MeOH);
[α]D -86.66 (c = 0.6, H2O). IR (nujol): 3200-3600(br) cm-1. 1H NMR (300 MHz, D2O): δ = 3.27 (dd, J = 5.7, 6.0 Hz, 1 H), 3.46 (ddd, app q, J = 5.8, 6.4, 6.6 Hz, 1 H), 3.63 (dd, J = 6.6, 12.0 Hz, 1 H), 3.72-3.78 (m, 2 H, H-7b), 3.83 (dd, J = 5.1, 11.4 Hz, 1 H), 3.97 (ddd, J = 3.3, 6.3, 9.9 Hz, 1 H), 4.29 (dd, J = 4.8, 5.7 Hz, 1 H), 4.35 (dd, J = 4.8, 6.6 Hz, 1 H). 13C NMR (75 MHz, D2O): δ = 62.1, 62.3, 62.4, 65.8, 71.9, 73.7, 73.7. Anal. Calcd for C7H15NO5 (193.2): C, 43.52; H, 7.83. Found: C, 43.50; H, 7.81.
2,5-Dideoxy-2,5-imino-
d
-galactitol (
14): yield: 83%; viscous liquid; R
f
0.10 (MeOH). IR (nujol): 3200-3600(br) cm-1. 1H NMR (300 MHz, D2O): δ = 3.75-3.83 (m, 2 H, H-2), 3.92 (dd, J = 8.4, 12.3 Hz, 2 H), 4.01 (dd, J = 5.1, 12.3 Hz, 2 H) 4.50 (dd, J = 1.5, 4.5 Hz, 2 H). 13C NMR (75 MHz, D2O): δ = 60.2, 63.8, 72.3. Anal. Calcd for C6H13NO4 (163): C, 44.16; H, 8.03. Found: C, 44.17; H, 8.05.
2,5-Dideoxy-2,5-imino-
d
-galactitol Hydrochloride (
15): yield: 89%; semi solid. IR (nujol): 3200-3600(br) cm-1. 1H NMR (300 MHz, D2O): δ = 3.73-3.81 (m, 2 H), 3.90 (dd, J = 8.1, 12.0 Hz, 2 H), 4.01 (dd, J = 4.8, 12.0 Hz, 2 H), 4.48 (d, J = 5.1 Hz, 2 H). 13C NMR (75 MHz, D2O): δ = 57.8, 61.4, 70.0. Anal. Calcd for C6H14NO4Cl (199.5): C, 36.10; H, 7.07. Found: C, 36.12; H, 7.07.