Subscribe to RSS
DOI: 10.1055/s-2007-970779
Novel Ligand-Free, Cobalt-Catalyzed [2+2+2] Cycloadditions: Syntheses of 1,4-Disilatetralines and 1,3-Disilaindanes
Publication History
Publication Date:
08 March 2007 (online)

Abstract
A new and simple catalytic system for efficient [2+2+2] alkyne cycloadditions was discovered. Cobalt(II) iodide in acetonitrile, in the presence of zinc powder, can catalyze arene synthesis at room temperature, and a 2.5% catalyst load gives almost complete consumption of the starting materials within ca. five minutes. Sterically hindered diynes can be efficiently coupled with terminal and internal monoynes. A large excess of monoyne is not required. Relatively small amounts of byproducts make the isolation of the target compound straightforward. This method allows efficient one-step syntheses of 1,4-disilatetralines and 1,3-disilaindanes, which are hardly available using other methods.
Key words
alkyne cycloaddition - arene synthesis - silicon
- For reviews, see:
-
1a
Vollhardt KPC. Angew. Chem., Int. Ed. Engl. 1984, 23: 539 ; Angew. Chem. 1984 , 96, 525 -
1b
Schore NE. Chem. Rev. 1988, 88: 1081 -
1c
Schore NE. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. Pergamon Press; Oxford: 1991. p.1129 -
1d
Grotjahn DB. In Comprehensive Organometallic Chemistry II Vol. 12:Abel EW.Stone FGA.Wilkinson G.Hegedus LS. Pergamon Press; Oxford: 1995. p.741 -
1e
Lautens M.Klute W.Tam W. Chem. Rev. 1996, 96: 49 -
1f
Ojima I.Tzamarioudaki M.Li Z.Donovan RJ. Chem. Rev. 1996, 96: 635 -
1g
Frühauf H.-W. Chem. Rev. 1997, 97: 523 -
1h
Saito S.Yamamoto Y. Chem. Rev. 2000, 100: 2901 -
1i
Malacria M.Aubert C.Renaud J.-L. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 1:Lautens M.Trost BM. Georg Thieme Verlag; Stuttgart: 2001. p.439 -
1j
Varela JA.Saa C. Chem. Rev. 2003, 103: 3787 -
1k
Kotha S.Brahmachary E.Lahiri K. Eur. J. Org. Chem. 2005, 4741 - For some recent contributions, see:
-
2a
Tanaka K.Nishida G.Wada A.Noguchi K. Angew. Chem. Int. Ed. 2004, 43: 6510 ; Angew. Chem. 2004 , 116, 6672 -
2b
Saaby S.Baxendale IR.Ley SV. Org. Biomol. Chem. 2005, 3: 3365 -
2c
Tanaka K.Nishida G.Ogino M.Hirano M.Noguchi K. Org. Lett. 2005, 7: 3119 -
2d
Cadierno V.García-Garrido SE.Gimeno J. J. Am. Chem. Soc. 2006, 128: 15094 -
2e
Tekavec TN.Zuo G.Simon K.Louie J. J. Org. Chem. 2006, 71: 5834 -
3a
Slowinski F.Aubert C.Malacria M. Adv. Synth. Catal. 2001, 343: 64 -
3b
Hilt G.Vogler T.Hess W.Galbiati F. Chem. Commun. 2005, 1474 -
3c
Hilt G.Hess W.Vogler T.Hengst C. J. Organomet. Chem. 2005, 690: 5170 -
3d
Chang H.-T.Jeganmohan M.Cheng C.-H. Chem. Commun. 2005, 4955 -
3e
Saino N.Kogure D.Okamoto S. Org. Lett. 2005, 7: 3065 -
3f
Saino N.Amemiya F.Tanabe E.Kase K.Okamoto S. Org. Lett. 2006, 8: 1439 -
4a
Montana JG,Fleming I,Tacke R, andDaiss J. inventors; PCT Int. Patent Appl., WO045625A1. -
4b
Montana JG,Showell GA,Fleming I,Tacke R, andDaiss J. inventors; PCT Int. Patent Appl., WO048390A1. -
4c
Montana JG,Showell GA, andTacke R. inventors; PCT Int. Patent Appl., WO048391A1. -
4d
Daiss JO.Burschka C.Mills JS.Montana JG.Showell GA.Fleming I.Gaudon C.Ivanova D.Gronemeyer H.Tacke R. Organometallics 2005, 24: 3192 -
4e
Miller DJ,Showell GA,Conroy R,Daiss J,Tacke R, andTebbe D. inventors; PCT Int. Patent Appl., WO005443A1. -
4f
Büttner MW.Penka M.Doszczak L.Kraft P.Tacke R. Organometallics 2007, in press - For comparison, see:
-
7a
Bönnemann H.Brinkmann R.Schenkluhn H. Synthesis 1974, 575 -
7b
Chiusoli GP.Costa M.Zhou Z. Gazz. Chim. Ital. 1992, 122: 441 -
8a
Pardigon O.Tenaglia A.Buono G. J. Org. Chem. 1995, 60: 1868 -
8b
Chen Y.Kiattansakul R.Ma B.Snyder JK. J. Org. Chem. 2001, 66: 6932 -
8c
Hilt G.Lüers S.Schmidt F. Synthesis 2003, 634 -
8d
Achard M.Tenaglia A.Buono G. Org. Lett. 2005, 7: 2353 -
8e
Achard M.Mosrin M.Tenaglia A.Buono G. J. Org. Chem. 2006, 71: 2907 - 9
Binger P.Albus S. J. Organomet. Chem. 1995, 493: C6
References and Notes
6-(Tetrahydropyran-2-yloxymethyl)-1,1,4,4-tetra-methyl-1,4-disila-1,2,3,4-tetrahydronaphthalene ( 3a): 1H NMR (400.1 MHz, CDCl3): δ = 0.199 (s, 6 H, 2 × SiCH3), 0.207 (s, 3 H, SiCH3), 0.210 (s, 3 H, SiCH3), 0.99 (s, 4 H, SiCH2CH2Si), 1.44-1.58, 1.80-1.91 (m, 2 H, 4-CH2 of THP), 1.50-1.63 (m, 2 H, 5-CH2 of THP), 1.63-1.77 (m, 2 H, 3-CH2 of THP), 3.51-3.57, 3.89-3.96 (m, 2 H, 6-CH2 of THP), 4.47, 4.70 (AB system, J AB = 12.1 Hz, 2 H, CCH2O), 4.70 (t, J = 3.6 Hz, 1 H, 2-CH of THP), 7.34 [dd, A part of an AXY system, J AY = 7.6 Hz, J AX = 1.9 Hz, 1 H, 7-CH of THNaph (= 1,2,3,4-tetrahydronaphthalene)], 7.45 (dd, X part of an AXY system, J AX = 1.9 Hz, J XY = 0.6 Hz, 1 H, 5-CH of THNaph), 7.47 (dd, Y part of an AXY system, J AY = 7.6 Hz, J XY = 0.6 Hz, 1 H, 8-CH of THNaph). 13C NMR (100.6 MHz, CDCl3): δ = -1.51 (2 C, 2 × SiCH3), -1.47 (2 C, 2 × SiCH3), 7.52 (SiCH2C), 7.55 (SiCH2C), 19.4 (C-4 of THP), 25.5 (C-5 of THP), 30.6 (C-3 of THP), 62.1 (C-6 of THP), 69.0 (CCH2O), 97.8 (C-2 of THP), 127.7 (C-7 of THNaph), 132.8 (C-5 of THNaph), 133.6 (C-8 of THNaph), 137.7 (C-6 of THNaph), 144.9, 145.9 (C-8a, C-4a of THNaph). Anal. Calcd for C18H30O2Si2: C, 64.61; H, 9.04. Found: C, 64.3; H, 8.7.
6Synthesis of 5-(Tetrahydropyran-2-yloxymethyl)-1,1,3,3-tetramethyl-1,3-disilaindane ( 3d): Bis(ethynyldimethylsilyl)methane (3.61 g, 20.0 mmol), 2-(prop-2-ynyloxy)tetrahydropyrane (3.93 g, 28.0 mmol), and a solution of cobalt(II) iodide (156 mg, 499 µmol) in MeCN (1.3 mL) were added one after another to a stirred suspension of zinc (131 mg, 2.00 mmol) in MeCN (40 mL). When the reaction mixture started to get warm (after ca. 1 min), it was cooled in an ice-bath. After 5 min the cooling bath was removed, and Et3N (1 mL) was added. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel [63-200 µm; eluent: n-pentane-Et2O, 9:1 ] to give 3d (5.14 g, 80%) as a colorless oil. 1H NMR (400.1 MHz, CDCl3): δ = -0.06 (s, 2 H, SiCH2Si), 0.265 (s, 6 H, 2 × SiCH3), 0.273 (s, 3 H, SiCH3), 0.275 (s, 3 H, SiCH3), 1.47-1.59, 1.80-1.93 (m, 2 H, 4-CH2 of THP), 1.49-1.66 (m, 2 H, 5-CH2 of THP), 1.61-1.78 (m, 2 H, 3-CH2 of THP), 3.50-3.59, 3.89-3.97 (m, 2 H, 6-CH2 of THP), 4.49, 4.79 (AB system, J AB = 11.9 Hz, 2 H, CCH2O), 4.71 (t, J = 3.5 Hz, 1 H, 2-CH of THP), 7.37 (dd, A part of an AXY system, J AY = 7.4 Hz, J AX = 1.6 Hz, 1 H, 6-CH of IND), 7.51 (dd, X part of an AXY system, J AX = 1.6 Hz, J XY = 0.7 Hz, 1 H, 4-CH of IND), 7.53 (dd, Y part of an AXY system, J AY = 7.4 Hz, J XY = 0.7 Hz, 1 H, 7-CH of IND). 13C NMR (100.6 MHz, CDCl3): δ = -2.4 (SiCH2Si), 0.540 (SiCH3), 0.546 (SiCH3), 0.552 (2 C, 2 × SiCH3), 19.4 (C-4 of THP), 25.5 (C-5 of THP), 30.6 (C-3 of THP), 62.1 (C-6 of THP), 69.2 (CCH2O), 97.9 (C-2 of THP), 128.4 (C-6 of IND), 131.2 (C-4 of IND), 131.8 (C-7 of IND), 138.3 (C-5 of IND), 149.7, 150.7 (C-3a, C-7a of IND). 29Si NMR (79.5 MHz, CDCl3): δ = 8.6, 8.8. Anal. Calcd for C17H28O2Si2: C, 63.69; H, 8.80. Found: C, 63.3; H, 8.5.