RSS-Feed abonnieren
DOI: 10.1055/s-2007-970887
Glykogenspeichererkrankung Typ 2 - Morbus Pompe
Neue pathophysiologische Aspekte und aktueller Stand der Enzymersatztherapie mit Alglucosidase-alfaGlycogen Storage Disease Type 2 - Pompe DiseaseNew Pathophysiological Aspects and Current State of Enzyme Replacement Therapy with Alglucosidase AlfaPublikationsverlauf
Publikationsdatum:
06. Juni 2007 (online)

Zusammenfassung
Die autosomal-rezessive Glykogenspeichererkrankung Typ 2 (GSD2, Morbus Pompe) ist durch Mangel des Glykogens degradierenden lysosomalen Enzyms α-1,4-Glucosidase (saure Maltase, acid alpha-glucosidase GAA) verursacht. Seit 2006 ist als sog. Ophan Drug Alglucosidase-alfa in Europa und den USA zur Behandlung der GSD2 zugelassen. Klinische Studien mit Alglucosidase-alfa bei infantiler und juveniler Pompe-Erkrankung zeigten eine Verlängerung der Überlebenszeit, der statomotorischen Entwicklung, und Verbesserung der Kardiomyopathie. Daher wird die Enzymersatztherapie auch für adulte Patienten eingesetzt und es liegen Erfolg versprechende Kasuistiken für diese Altersgruppe vor. Seit 2005 wird eine weitere Studie für diese Altersgruppe durchgeführt. Es zeichnen sich aber pathophysiologisch begründbare Einschränkungen der Wirksamkeit bei den Erwachsenen ab, insbesondere da weder das Überleben noch die Kardiomyopathie in dieser Altersgruppe relevante Zielparameter sein können. Die Enzymersatztherapie beruht auf einer rezeptormediierten Endozytose von rekombinantem humanem GAA. Dies ist besonders im Herzmuskel erfolgreich, aber im Skelettmuskel ist der Glykogenabbau in Typ-2-Fasern eingeschränkt. Neueste Untersuchungen zur Pathogenese zeigten neben dem Enzymmangel eine profunde Störung des lysosomalen autophagischen Abbauweges. Es findet sich eine progressive altersabhängige Zunahme von autophagischen Vakuolen in Kombination mit erweiterten, glykogengefüllten Lysosomen im Muskelgewebe. Teile des substituierten Enzyms scheinen in diesen autophagischen Zonen gefangen und erreichen nicht ihr Zielorganell, die Lysosomen. Zusätzlich sind mitochondriale Veränderungen, Lipofuszinablagerungen und eine Zerstörung des kontraktilen Apparates nachweisbar. Diese Zellstrukturänderungen sind relevante Faktoren für die Muskelschwäche und Ausdauereinschränkung der GSD2 Patienten. In dieser Arbeit werden aktuellen Aspekte zur Pathophysiologie vorgestellt und eine Zusammenfassung der Ergebnisse der Enzymersatztherapie berichtet.
Abstract
Glycogen storage disease type 2 (GSD2, Pompe disease) is caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). In 2006 alglucosidase alfa was authorized as orphan drug treatment option of all phenotypes of GSD2. Results of clinical trails in infantile and juvenile Pompe disease with alglucosidase alfa showed prolonged survival, motor gains, and reversal of cardiomyopathy. These principal disease improvements by enzyme replacement therapy (ERT) in children led to spread the use of this therapy to the adult patients. Although there are some promising reports of successful ERT in adults, there seems to be some shortcomings of ERT in adults. The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be successful in cardiac muscle, but to a lesser degree in skeletal muscle, especially in clearing glycogen stores from type 2 muscle fibers. Recent investigations demonstrated a profound disturbance of the lysosomal degradative autophagic pathway. A progressive age-dependent autophagic built-up in addition to enlargement of glycogen-filled lysosomes was found in muscle tissue. Part of the substituted enzyme is trapped in these autophagic areas instead of reaching its lysosomal target. Furthermore, asides swollen, glycogen packed lysosomes, pronounced autophagia, mitochondrial alterations, lipofuscin, and direct contractile texture disturbances, like Z-line thickening and smearing are relevant for muscle weakness and power endurance handicap, seen in men and mice. In this report, an update on the pathophysiology and a summary of the current state of ERT in GSD2 will be given.
Literatur
- 1 OMIM 232 300 Glycogen storage disease type 2.
Reference Ris Wihthout Link
- 2
Reuser A J, Koster J F, Hoogeveen A, Galjaard H.
Biochemical, immunological, and cell genetic studies in glycogenosis type II.
Am J Hum Genet.
1978;
30
132-43
Reference Ris Wihthout Link
- 3
Raben N, Plotz P, Byrne B J.
Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease).
Curr Mol Med.
2002;
2
145-166
Reference Ris Wihthout Link
- 4 Baethmann M, Straub V. Morbus Pompe - Grundlagen, Diagnose und Therapie. Bremen; Uni-Med Verlag 2006
Reference Ris Wihthout Link
- 5 Hirschhorn R, Reuser A JJ.
Glycogen storage disease type II: acid α-glucosidase (Acid maltase) deficiency. In: Scriver CR, Beaudet AL, Valle D, Sly WS (eds) The metabolic and molecular bases of inherited disease. 8th ed. New York; McGraw-Hill 2001: 3389-3420Reference Ris Wihthout Link - 6 Schoser B GH, Müller-Höcker J, Gempel K. et al .Glycogen storage disease type 2: clinico-pathological phenotype revisited. Neuropathol Appl Neurol 2007, im Druck
Reference Ris Wihthout Link
- 7
Boerkoel C F, Exelbert R, Nicastri C. et al .
Leaky splicing mutation in the acid maltase gene is associated with delayed onset
of glycogenosis type II.
Am J Hum Genet.
1995;
56
887-897
Reference Ris Wihthout Link
- 8
Hermans M MP, Leenen D van, Kroos M A. et al .
Twenty-two novel mutations in the lysosomal alpha-glucosidase gene (GAA) underscore
the genotype-phenotype correlation in glycogen storage disease type II.
Human Mutation.
2004;
23
47-56
Reference Ris Wihthout Link
- 9
Laforet P, Nicolino M, Eymard B. et al .
Juvenile and adult-onset acid maltase deficiency in France.
Neurology.
2000;
55
1122-1128
Reference Ris Wihthout Link
- 10
Ausems M G, Wokke J H, Reuser A J, Diggelen O P van.
Juvenile and adult-onset acid maltase deficiency in France: genotype-phenotype correlation.
Neurology.
2001;
57
1938
Reference Ris Wihthout Link
- 11
Vorgerd M, Burwinkel B, Reichmann H. et al .
Adult-onset glycogen storage disease type II: phenotypic and allelic heterogeneity
in German patients.
Neurogenetics.
1998;
3
205-211
Reference Ris Wihthout Link
- 12
Martin J J, Barsy T de, Hoof F van, Palladini G.
Pompe's disease: an inborn lysosomal disorder with storage of glycogen. A study of
brain and striated muscle.
Acta Neuropathol.
1973;
23
229-244
Reference Ris Wihthout Link
- 13
Swash M, Schwartz M S, Apps M C.
Adult onset acid maltase deficiency. Distribution and progression of clinical and
pathological abnormality in a family.
J Neurol Sci.
1985;
68
61-74
Reference Ris Wihthout Link
- 14
Walt J D van der, Swash M, Leake J, Cox E L.
The pattern of involvement of adult-onset acid maltase deficiency at autopsy.
Muscle Nerve.
1987;
10
272-281
Reference Ris Wihthout Link
- 15
Bijvoet A G, Kamp E H van de, Kroos M A. et al .
Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease.
Hum Mol Genet.
1998;
7
53-62
Reference Ris Wihthout Link
- 16
Bijvoet A G, Hirtum H Van, Vermey M. et al .
Pathological features of glycogen storage disease type II highlighted in the knockout
mouse model.
J Pathol.
1999;
189
416-424
Reference Ris Wihthout Link
- 17
Hesselink R P, Gorselink M, Schaart G. et al .
Impaired performance of skeletal muscle in alpha-glucosidase knockout mice.
Muscle Nerve.
2002;
25
873-883
Reference Ris Wihthout Link
- 18
Hesselink R P, Wagenmakers A J, Drost M R, Vusse G J Van der.
Lysosomal dysfunction in muscle with special reference to glycogen storage disease
type II.
Biochim Biophys Acta.
2003;
1637
164-170
Reference Ris Wihthout Link
- 19
Hesselink R P, Kranenburg G Van, Wagenmakers A J. et al .
Age-related decline in muscle strength and power output in acid 1 - 4 alpha-glucosidase
knockout mice.
Muscle Nerve.
2005;
31
374-381
Reference Ris Wihthout Link
- 20
Hesselink R P, Schaart G, Wagenmakers A J. et al .
Age-related morphological changes in skeletal muscle cells of acid alpha-glucosidase
knockout mice.
Muscle Nerve.
2006;
33
505-513
Reference Ris Wihthout Link
- 21
Fukuda T, Ewan L, Bauer M. et al .
Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease.
Ann Neurol.
2006;
59
700-708
Reference Ris Wihthout Link
- 22
Pompe J-C.
Over idiopatische hypertrophie van het hart.
Ned Tijdschr Geneeskd.
1932;
76
304
Reference Ris Wihthout Link
- 23
Putschar M.
Über angeborene Glykogenspeicher-Krankheit des Herzens. „Thesaurimosis glycogenica”
(v. Gierke).
Beitr Pathol Anat Allg Pathol.
1932;
90
222
Reference Ris Wihthout Link
- 24
Hout H MP van den, Hop W, Diggelen O P van. et al .
The natural course of infantile Pompe's disease: 20 original cases compared with 133
cases from the literature.
Pediatrics.
2003;
112
332-340
Reference Ris Wihthout Link
- 25
Hagemans M L, Winkel L P, Hop W C. et al .
Disease severity in children and adults with Pompe disease related to age and disease
duration.
Neurology.
2005;
64
2139-2141
Reference Ris Wihthout Link
- 26
Winkel L P, Hagemans M L, Doorn P A van. et al .
The natural course of non-classic Pompe's disease; a review of 225 published cases.
J Neurol.
2005;
252
875-884
Reference Ris Wihthout Link
- 27
Hagemans M LC, Winkel L PF, Doorn P A van. et al .
Clinical manifestation and natural course of late-onset Pompe's disease in 54 Dutch
patients.
Brain.
2005;
128
671-677
Reference Ris Wihthout Link
- 28
Hagemans M L, Janssens A C, Winkel L P. et al .
Late-onset Pompe disease primarily affects quality of life in physical health domains.
Neurology.
2004;
63
1688-1692
Reference Ris Wihthout Link
- 29
Anneser J M, Pongratz D E, Podskarbi T. et al .
Mutations in the acid alpha-glucosidase gene (M. Pompe) in a patient with an unusual
phenotype.
Neurology.
2005;
64
368-370
Reference Ris Wihthout Link
- 30
Kishnani P S, Steiner R D, Bali D. et al .
Pompe disease diagnosis and managment guideline.
Genet in Med.
2006;
8
267-288
Reference Ris Wihthout Link
- 31 Filipe M I, Lake B D. Histochemistry in pathology. Edinburgh; Churchill Livingstone 1983
Reference Ris Wihthout Link
- 32
Pichiecchio A, Uggetti C, Ravaglia S. et al .
Muscle MRI in adult-onset acid maltase deficiency.
Neuromuscul Disord.
2004;
14
51-55
Reference Ris Wihthout Link
- 33
Engel A G, Dale A J.
Autophagic glycogenosis of late onset with mitochondrial abnormalities: light and
electron microscopic observations.
Mayo Clin Proc.
1968;
43
233-279
Reference Ris Wihthout Link
- 34
Hudgson P, Gardner-Medwin D, Worsfold M. et al .
Adult myopathy from glycogen storage disease due to acid maltase deficiency.
Brain.
1968;
91
435-462
Reference Ris Wihthout Link
- 35
Engel A G.
Acid maltase deficiency in adults: studies in four cases of a syndrome which may mimic
muscular dystrophy or other myopathies.
Brain.
1970;
93
599-616
Reference Ris Wihthout Link
- 36
Engel A G, Gomez M R, Seybold M E, Lambert E H.
The spectrum and diagnosis of acid maltase deficiency.
Neurology.
1973;
23
95-106
Reference Ris Wihthout Link
- 37
Slonim A E, Bulone L, Goldberg T. et al .
Modification of the natural history of adult-onset acid maltase deficiency by nutrition
and exercise therapy.
Muscle Nerve.
2007;
35
70-77
Reference Ris Wihthout Link
- 38
Bodamer O A, Haas D, Hermans M M. et al .
L-alanine supplementaion in late infantile glycogen storage disease type 2.
Pedratr Neurol.
2002;
27
145-156
Reference Ris Wihthout Link
- 39
Bodamer O A, Halliday D, Leonard J V.
The effects of l-alanine supplementation in late-onset glycogen storage disease type
2.
Neurology.
2000;
55
710-712
Reference Ris Wihthout Link
- 40
Desnick R J.
Enzyme replacement and enhancement therapies for lysosomal disorders.
J Inherit Metab Dis.
2004;
27
385-410
Reference Ris Wihthout Link
- 41
Mengel E, Musch A.
Alglucosidase-alfa.
Arzneimitteltherapie.
2007;
25
40-44
Reference Ris Wihthout Link
- 42 Fachinformation Alglucosidase-alfa (Myozyme™),. Stand 29.03.2006
Reference Ris Wihthout Link
- 43
Kikuchi T, Yang H W, Pennybacker M. et al .
Clinical and metabolic correction of Pompe disease by enzyme therapy in acid maltase-deficient
quail.
J Clin Invest.
1998;
101
827-833
Reference Ris Wihthout Link
- 44
Bijvoet A G, Hirtum H Van, Kroos M A. et al .
Human acid alphaglucosidase from rabbit milk has therapeutic effect in mice with glycogen
storage disease type 2.
Hum Mol Genet.
1999;
8
2145-2153
Reference Ris Wihthout Link
- 45
Raben N, Danon M, Gilbert A L. et al .
Enzyme replacement therapy in the mouse model of Pompe disease.
Mol Genet Metab.
2003;
80
159-169
Reference Ris Wihthout Link
- 46
Hout J L Van den, Reuser A J, Vulto A G. et al .
Recombinant human alpha-glucosidase from rabbit milk in Pompe patients.
Lancet.
2000;
356
397-398
Reference Ris Wihthout Link
- 47
Amalfitano A, Bengur A R, Morse R P. et al .
Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage
disease type II: results of a phase I/II clinical trial.
Genet Med.
2001;
3
132-138
Reference Ris Wihthout Link
- 48
Kishnani P S, Nicolinoo M, Voit T. et al .
Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset
Pompe disease.
J Pediatr.
2006;
149
89-97
Reference Ris Wihthout Link
- 49
Klinge L, Straub V, Neudorf U. et al .
Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with
classical infantile Pompe disease: results of a phase II clinical trial.
Neuromuscl Disord.
2005;
15
24-31
Reference Ris Wihthout Link
- 50
Kishnani P S, Corzo D, Nicolino M. et al .
Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset
Pompe disease.
Neurology.
2007;
68
99-109
Reference Ris Wihthout Link
- 51
Hout J MP Van den, Kamphoven J HJ, Winkel L PF. et al .
Long-Term intravenous treatment f Pompe disease with recombinant human alpha-glucosidase
from milk.
Pediatrics.
2004;
113
448-457
Reference Ris Wihthout Link
- 52
Klinge L, Straub V, Neudorf U, Voit T.
Enzyme replacement therapy in classic infantile Pompe disease: results of a ten-month
follow-up study.
Neuropediatrics.
2005;
36
6-11
Reference Ris Wihthout Link
- 53
Winkel L P, Hout J M Van den, Kamphoven J H. et al .
Enzyme replacement therapy in late-onset Pompe's disease: a three-year follow-up.
Ann Neurol.
2004;
55
495-502
Reference Ris Wihthout Link
- 54
Koeberl D D, Kishnani P S, Chen Y T.
Glycogen storage disease types 1 and 2: treatment updates.
J Inherit Metab Dis.
2007;
30
159-164
Reference Ris Wihthout Link
- 55
Hunley T E, Corzo D, Dudek M. et al .
Nephrotic syndrome complicating alpha-glucosidase replacement therapy for Pompe disease.
Pediatrics.
2004;
114
532-535
Reference Ris Wihthout Link
- 56
Raben N, Fukuda T, Gilbert A L. et al .
Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes
are equipotent, but neither completely clears glycogen from type II muscle fibers.
Mol Ther.
2005;
11
48-56
Reference Ris Wihthout Link
- 57
Winkel L P, Kamphoven J H, Hout H J van den. et al .
Morphological changes in muscle tissue of patients with infantile Pompe's disease
receiving enzyme replacement therapy.
Muscle Nerve.
2003;
27
743-751
Reference Ris Wihthout Link
- 58
Zhu Y, Li X, Kyazike J. et al .
Conjugation of mannose 6-phosphate-containing oligosaccharides to acid alfa-glucosidase
improves the clearance of glycogen in Pompe mice.
J Biol Chem,.
2004;
279
50336-50341
Reference Ris Wihthout Link
- 59
Sun B, Zhang H, Franco L M. et al .
Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease
type II.
Mol Ther.
2005;
11
57-65
Reference Ris Wihthout Link
- 60
Mah C, Pacak C A, Cresawn K O. et al .
Physiological correction of Pompe disease by systemic delivery of adeno-associated
virus serotype 1 vector.
Mol Ther.
2007;
15
501-507
Reference Ris Wihthout Link
PD Dr. med. Benedikt G. H. Schoser
Friedrich-Baur-Institut, Neurologische Klinik, Ludwig-Maximilians-Universität München
Ziemssenstraße 1 a
80336 München
eMail: bschoser@med.uni-muenchen.de