Subscribe to RSS
DOI: 10.1055/s-2007-977417
Nitromethane (MeNO2)
Publication History
Publication Date:
13 April 2007 (online)

Introduction
Nitromethane (NM) is a colorless, oily liquid (mp -28.5 °C; bp 101.1 °C) with a moderately strong disagreeable odor. It is a highly flammable liquid at room temperature and reacts with alkali, strong acids, oxidizers, and metallic oxides. [1] NM is completely miscible with most organic solvents. If not properly handled, stored, or used, it can be dangerous and can detonate. The hazardous decomposition products of NM are toxic fumes of nitrogen oxides.
Kolbe first prepared NM in 1872. [2] It is synthesized by the reaction of chloroacetic acid with sodium hydroxide followed by the treatment of sodium nitrite. [3]
The versatility and synthetic ability of this reagent have been exemplified in its increasing use in organic synthesis (e.g., pharmaceuticals, pesticides, fibers, painting, and ore dressing). [4] The potential applications of NM in the Synthesis of agricultural soil fumigants and industrial antimicrobials have drawn much more attention. It is widely applied as extraction solvent or reaction medium. To name a few of the many applications, NM is used as solvent in capillary electrophoresis [5a] and in the synthesis of glucosyl asparagines, [5b] it also plays a role as scavenger [6] of acrylonitrile in the deprotection of synthetic oligonucleotides. An enclave inclusion compound is afforded by the recrystallization of 18-crown-6 from NM. [7] With an iridium pincer complex, NM forms a coordinated ion that acts as a putative active species in metal-catalyzed nitroaldol reactions. [8]
In this Spotlight, current advances using nitromethane in organic syntheses are emphasized with respect to stereoselectivity. The success of this reagent is related to the unique capacity of the nitro group to be selectively converted into various functionalities under mild conditions.
- 1
Torssell KBG.Gothelf KV. Encyclopedia of Reagents for Organic Synthesis Vol. 6:Paquette LA. John Wiley & Sons; Chicester: 1995. p.3742-3746 - 2
Kolbe H. J. Prakt. Chem. 1872, 5: 427 - 3
Whitmore FC.Whitmore MG. Org. Synth., Coll. Vol. IGilman H. John Wiley & Sons; New York: 1941. p.401 - 4
Markoksky SB. In Ullmann’s Encyclopedia of Industrial Chemsitry 5th Ed., Vol. A17:Elvers B.Hawkins S.Schulz G. VCH; New York: 1991. p.401-409 -
5a
Subirats X.Porras SP.Roses M.Kenndler E.
J. Chromatogr., A. 2005, 1079: 246 -
5b
Miura T.Kim S.Kitano Y.Tada M.Chiba K. Angew. Chem. Int. Ed. 2006, 45: 1461 - 6
Umemoto T.Wada T. Tetrahedron Lett. 2005, 46: 4251 - 7
Weber E.Franken S.Puff H.Ahrendt J. J. Chem. Soc., Chem. Commun. 1986, 467 - 8
Zhang X.Emge TJ.Jhosh R.Jespersen KK.Godman AS. Organometallics 2006, 25: 1303 - 9
Christensen C.Juhl K.Hazell RG.Jørgensen KA. J. Org. Chem. 2002, 67: 4875 - 10
Chetia A.Longchar M.Lekhok KC.Boruah RC. Synlett 2004, 1309 - 11
Ruano JLG.Topp M.Cantarero JL.Aleman J.Remuinan MJ.Cid MB. Org. Lett. 2005, 7: 4407 - 12
Petrini M.Seri M. Tetrahedron 2006, 62: 960 - 13
Itoh K.Kanemasa S. J. Am. Chem. Soc. 2002, 124: 13394 - 14
Chetia A.Saikia CJ.Lekhok KC.Boruah RC. Tetrahedron Lett. 2004, 45: 2649 - 15
Ballini R.Balsamini C.Diamantini G.Savoretti N. Synthesis 2005, 1055