Abstract
The catalytic enantioselective fluorination of α-cyanoalkylphosphonates catalyzed
by chiral palladium complexes was examined. Treatment of α-cyanoalkylphosphonates
with N -fluorobenzenesulfonimide as the electrophilic fluorinating reagent under mild reaction
conditions afforded the corresponding α-fluorinated α-cyanoalkylphosphonates in excellent
yields with high enantiomeric excesses (80-91%).
Key words
electrophilic fluorination - asymmetric catalysis - chiral palladium catalysts - α-cyanoalkylphosphonates
- α-fluoroalkylphosphonates
References and Notes
<A NAME="RY01806ST-1A">1a </A>
Chambers RD.
Fluorine in Organic Chemistry
Blackwell;
Oxford:
2004.
<A NAME="RY01806ST-1B">1b </A>
Kirsch P.
Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications
Wiley-VCH;
Weinheim:
2004.
<A NAME="RY01806ST-1C">1c </A>
Hiyama T.
Kanie K.
Kusumoto T.
Morizawa Y.
Shimizu M.
Organofluorine Compounds: Chemistry and Applications
Springer-Verlag;
Berlin:
2000.
<A NAME="RY01806ST-1D">1d </A>
Biomedical Frontiers of Fluorine Chemistry
Ojima I.
McCarthy JR.
Welch JT.
ACS Symposium Series 639, American Chemical Society;
Washington DC:
1996.
For reviews, see:
<A NAME="RY01806ST-1E">1e </A>
Kirk KL.
J. Fluorine Chem.
2006,
127:
1013
<A NAME="RY01806ST-1F">1f </A>
Isanbor C.
O’Hagan D.
J. Fluorine Chem.
2006,
127:
303
<A NAME="RY01806ST-2A">2a </A>
Bohm H.-J.
Banmer D.
Bendels S.
Kansy M.
Kuhn B.
Muller K.
Obst-Sander U.
Stahl M.
ChemBioChem
2004,
5:
637
<A NAME="RY01806ST-2B">2b </A>
Smart BE.
J. Fluorine Chem.
2001,
109:
3
<A NAME="RY01806ST-2C">2c </A>
Ismail FMD.
J. Fluorine Chem.
2002,
118:
27
<A NAME="RY01806ST-3A">3a </A>
Ramachandran PV.
Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions
ACS Symposium Series 746, American Chemical Society;
Washington DC:
2000.
<A NAME="RY01806ST-3B">3b </A>
Enantiocontrolled Synthesis of Fluoroorganic Compounds
Soloshonok VA.
John Wiley & Sons;
Chichester:
1999.
<A NAME="RY01806ST-3C">3c </A> For review, see:
Bravo P.
Resnati G.
Tetrahedron: Asymmetry
1990,
1:
661
For reviews, see:
<A NAME="RY01806ST-4A">4a </A>
Lal GS.
Pez GP.
Syvret RG.
Chem. Rev.
1996,
96:
1737
<A NAME="RY01806ST-4B">4b </A>
Taylor SD.
Kotoris CC.
Hum G.
Tetrahedron
1999,
55:
12431
For reviews, see:
<A NAME="RY01806ST-5A">5a </A>
Mikami K.
Itoh Y.
Yamanaka M.
Chem. Rev.
2004,
104:
1
<A NAME="RY01806ST-5B">5b </A>
Ibrahim H.
Togni A.
Chem. Commun.
2004,
1147
<A NAME="RY01806ST-5C">5c </A>
Ma J.-A.
Cahard D.
Chem. Rev.
2004,
104:
6119
<A NAME="RY01806ST-5D">5d </A>
France S.
Weatherwax A.
Lectka T.
Eur. J. Org. Chem.
2005,
475
<A NAME="RY01806ST-5E">5e </A>
Prakash GKS.
Bier P.
Angew. Chem. Int. Ed.
2006,
45:
2172
<A NAME="RY01806ST-6">6 </A>
Hintermann L.
Togni A.
Angew. Chem. Int. Ed.
2000,
39:
4359
For β-keto esters, see:
<A NAME="RY01806ST-7A">7a </A>
Hamashima Y.
Yagi K.
Takano H.
Tamás L.
Sodeoka M.
J. Am. Chem. Soc.
2002,
124:
14530
<A NAME="RY01806ST-7B">7b </A>
Hamashima Y.
Takano H.
Hotta D.
Sodeoka M.
Org. Lett.
2003,
5:
3225
<A NAME="RY01806ST-7C">7c </A>
Ma J.-A.
Cahard D.
Tetrahedron: Asymmetry
2004,
15:
1007
<A NAME="RY01806ST-7D">7d </A>
Shibata N.
Ishimaru T.
Nagai T.
Kohno J.
Toru T.
Synlett
2004,
1703
<A NAME="RY01806ST-7E">7e </A>
Shibata N.
Kohno J.
Takai K.
Ishimaru T.
Nakamura S.
Toru T.
Kanemasa S.
Angew. Chem. Int. Ed.
2005,
44:
4204
For α-cyano acetates, see:
<A NAME="RY01806ST-8A">8a </A>
Kim HR.
Kim DY.
Tetrahedron Lett.
2005,
46:
3115
<A NAME="RY01806ST-8B">8b </A>
Park EJ.
Kim HR.
Joung CW.
Kim DY.
Bull. Korean Chem. Soc.
2004,
25:
1451
For β-keto phosphonates, see:
<A NAME="RY01806ST-9A">9a </A>
Bernardi L.
Jørgensen KA.
Chem. Commun.
2005,
1324
<A NAME="RY01806ST-9B">9b </A>
Hamashima Y.
Suzuki T.
Shimura Y.
Shimizu T.
Umebayashi N.
Tamura T.
Sasamoto N.
Sodeoka M.
Tetrahedron Lett.
2005,
46:
1447
<A NAME="RY01806ST-9C">9c </A>
Kim SM.
Kim HR.
Kim DY.
Org. Lett.
2005,
7:
2309
<A NAME="RY01806ST-9D">9d </A>
Kim SM.
Kang YK.
Lee K.
Mang JY.
Kim DY.
Bull. Korean Chem. Soc.
2006,
27:
423
<A NAME="RY01806ST-10A">10a </A>
Kim DY.
Park EJ.
Org. Lett.
2002,
4:
545
<A NAME="RY01806ST-10B">10b </A>
Enders D.
Hüttl MRM.
Synlett
2005,
991
<A NAME="RY01806ST-10C">10c </A>
Marigo M.
Fielenbach D.
Braunton A.
Kjærsgaard A.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
3703
<A NAME="RY01806ST-10D">10d </A>
Steiner DD.
Mase N.
Barbas CF.
Angew. Chem. Int. Ed.
2005,
44:
3706
<A NAME="RY01806ST-10E">10e </A>
Beeson TD.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
8826
<A NAME="RY01806ST-10F">10f </A>
Huang Y.
Walji AM.
Larsen CH.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
15051
<A NAME="RY01806ST-10G">10g </A>
Fukuzumi T.
Shibata N.
Sugiura M.
Nakamura S.
Toru T.
J. Fluorine Chem.
2006,
127:
548
<A NAME="RY01806ST-11">11 </A>
Berkowitz DB.
Bose M.
J. Fluorine Chem.
2001,
112:
13
<A NAME="RY01806ST-12A">12a </A>
Blackburn GM.
Chem. Ind. (London)
1981,
134
<A NAME="RY01806ST-12B">12b </A>
McKenna CE.
Shen P.
J. Org. Chem.
1981,
46:
4573
<A NAME="RY01806ST-12C">12c </A>
Nieschalk J.
O’Hagan D.
Chem. Commun.
1995,
719
<A NAME="RY01806ST-12D">12d </A>
Nieschalk J.
O’Hagan D.
Chem. Commun.
1995,
719
<A NAME="RY01806ST-12E">12e </A>
Jakeman DL.
Ivory AJ.
Willamson MP.
Blackburn GM.
J. Med. Chem.
1998,
41:
4493
<A NAME="RY01806ST-12F">12f </A>
Jakeman DL.
Ivory AJ.
Willamson MP.
Blackburn GM.
J. Med. Chem.
1998,
41:
4493
<A NAME="RY01806ST-12G">12g </A>
Berkowitz DB.
Bose M.
Pfannenstiel TJ.
Doukov T.
J. Org. Chem.
2000,
65:
4498
<A NAME="RY01806ST-13A">13a </A>
Kang YK.
Kim DY.
Tetrahedron Lett.
2006,
47:
4265
<A NAME="RY01806ST-13B">13b </A>
Park EJ.
Kim MH.
Kim DY.
J. Org. Chem.
2004,
69:
6897
<A NAME="RY01806ST-13C">13c </A>
Kim DY.
Huh SC.
Bull. Korean Chem. Soc.
2004,
25:
347
<A NAME="RY01806ST-13D">13d </A>
Kim DY.
Kim SM.
Koh KO.
Mang JY.
Bull. Korean Chem. Soc.
2003,
24:
1425
<A NAME="RY01806ST-13E">13e </A>
Kim DY.
Choi YJ.
Park HY.
Joung CU.
Koh KO.
Mang JY.
Jung K.-Y.
Synth. Commun.
2003,
33:
435
<A NAME="RY01806ST-13F">13f </A>
Kim DY.
Huh SC.
Kim SM.
Tetrahedron Lett.
2001,
42:
6299
<A NAME="RY01806ST-13G">13g </A>
Kim DY.
Huh SC.
Tetrahedron
2001,
57:
8933
<A NAME="RY01806ST-14A">14a </A>
Li K.
Hii KK.
Chem. Commun.
2003,
1132
<A NAME="RY01806ST-14B">14b </A>
Li K.
Horton PN.
Hursthouse MB.
Hii KK.
J. Organomet. Chem.
2003,
665:
250
<A NAME="RY01806ST-14C">14c </A> For an aquapalladium complex, see:
Shimada T.
Bajracharya GB.
Yamamoto Y.
Eur. J. Org. Chem.
2005,
59 ; and references cited therein
<A NAME="RY01806ST-14D">14d </A>
Vicente J.
Arcas A.
Coord. Chem. Rev.
2005,
249:
1135
<A NAME="RY01806ST-14E">14e </A> For Pd(II) chemistry, see:
Tsuji J.
Palladium Reagents and Catalysts: New Perspectives for 21st Century
John Wiley & Sons;
Chichester:
2004.
For the preparation of α-cyanoalkylphosphonates, see:
<A NAME="RY01806ST-15A">15a </A>
Kim DY.
Oh DY.
Synth. Commun.
1987,
17:
953
<A NAME="RY01806ST-15B">15b </A>
Kim DY.
Oh DY.
Bull. Korean Chem. Soc.
1997,
18:
994
<A NAME="RY01806ST-16">16 </A>
Typical procedure : To a stirred solution of 1-phenyl-1-cyanomethylphosphonate (1a , 12.6 mg, 0.05 mmol), Pd catalyst 4g (3.0 mg, 0.0025 mmol) and 2,6-di-tert -butyl-4-methylpyridine (20.5 mg, 0.1 mmol) in EtOH (0.5 mL) at r.t. was added NFSI
(2 , 18.9 mg, 0.06 mmol). The reaction mixture was stirred for 12 h at r.t. The mixture
was diluted with sat. NH4 Cl solution (10 mL) and extracted into EtOAc (3 × 10 mL). The combined organic layers
were dried over MgSO4 , filtered, concentrated, and purified by flash column chromatography to afford diethyl
1-fluoro-1-phenyl-1-cyanomethylphosphonate 3a (12.2 mg, 90%): [α]D
17 -27.7 (c 0.6, CHCl3 , 85% ee); 1 H NMR (200 MHz, CDCl3 ): δ = 1.26-1.38 (m, 6 H), 4.03-4.32 (m, 4 H), 7.42-7.50 (m, 3 H), 7.55-7.67 (m, 2
H); 13 C NMR (50 MHz, CDCl3 ): δ = 16.1, 65.7 (d, J = 7 Hz), 65.8 (d, J = 7 Hz), 87.6 (dd, J = 170, 195 Hz), 114.3 (d, J = 27 Hz), 125.8, 125.9, 128.7, 131.4; MS (EI): m /z = 271 [M+ ], 134, 109, 91, 81, 65, 43; HPLC (hexane-i -PrOH, 9:1, 220 nm, 1.0 mL/min, Chiralcel OJ column): t
R = 11.1 min(minor), t
R = 14.8 (major).