Synlett 2007(8): 1264-1268  
DOI: 10.1055/s-2007-977441
LETTER
© Georg Thieme Verlag Stuttgart · New York

Total Syntheses of New Proansamitocin Derivatives by Ring-Closing Metathesis

Axel Meyer, Andreas Kirschning*
Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
e-Mail: andreas.kirschning@uni-hannover.de;
Weitere Informationen

Publikationsverlauf

Received 6 February 2007
Publikationsdatum:
18. April 2007 (online)

Abstract

The enantioselective synthesis of two new proansamitocin derivatives is described. Macrocyclization is achieved by ring-closing metathesis of appropriate alkene and diene precursors.

    References and Notes

  • 1a Kupchan SM. Komoda Y. Court WA. Thomas GJ. Smith RM. Karim A. Gilmore CJ. Haltiwanger RC. Bryan RF. J. Am. Chem. Soc.  1972,  94:  1354 
  • 1b Kupchan SM. Komoda Y. Branfman AR. Sneden AT. Court WA. Thomas GJ. Hintz HPJ. Smith RM. Karim A. Howie GA. Verma AK. Nagao Y. Dailey RG. Zimmerly VA. Sumner WC. J. Org. Chem.  1977,  42:  2349 
  • 1c Bryan RF. Gilmore CJ. Haltiwanger RC. J. Chem. Soc., Perkin Trans. 2  1973,  897 
  • Also from two other plant families (Colubrina texensis, Rhamnaceae and Trewia nudiflora, Euphorbiaceae) maytansinoids were isolated:
  • 2a Reider PJ. Roland DM. Maytansinoids In The Alkaloids   Vol. 23:  Brossi A. Academic Press; New York: 1984.  p.71-156  
  • 2b Wani MC. Taylor HL. Wall ME. J. Chem. Soc., Chem. Commun.  1973,  390 
  • 2c Powell RG. Weisleder D. Smith CR. Kozlowski J. Rohwedder WK. J. Am. Chem. Soc.  1982,  104:  4929 
  • 2d Powell RG. Smith CR. Plattner RD. Jones BE. J. Nat. Prod.  1983,  46:  660 
  • 2e Smith CR. Powell RG. In Chemistry and Pharmacology of Maytansinoid Alkaloids in Alkaloids   Vol. 2:  Pelletier SW. John Wiley and Sons; New York: 1984.  p.149-204  
  • 3a Higashide E. Asai M. Ootsu K. Tanida S. Kozai Y. Hasegawa T. Kishi T. Sugino Y. Yoneda M. Nature (London)  1977,  270:  721 
  • 3b Asai M. Mizuta E. Izawa M. Haibara K. Kishi T. Tetrahedron  1979,  35:  1079 
  • A mutant of A. pretiosum spp. auranticum provided 15 additional ansamitocines:
  • 4a Izawa M. Tanida S. Asai M. J. Antibiot.  1981,  34:  496 
  • 4b Komoda Y. Kishi T. Maytansinoids, In Anticancer Agents Based on Natural Product Models   Douros J. Cassady JM. Academic Press; New York: 1980.  p.353-389  
  • 5a Rinehart KL. Shield LS. Fortschr. Chem. Org. Naturst.  1976,  33:  231 
  • 5b Cassady JM. Chan KK. Floss HG. Leistner E. Chem. Pharm. Bull.  2004,  52:  1 
  • 6a Thigpen JT. Ehrlich CE. Creasman WT. Curry S. Blessing JA. Am. J. Clin. Oncol. (CCT)  1985,  6:  273 
  • 6b Thigpen JT. Ehrlich CE. Conroy J. Blessing JA. Am. J. Clin. Oncol. (CCT)  1985,  6:  427 
  • 6c Ravry MJ. Omura GA. Birch R. Am J. Clin. Oncol. (CCT)  1985,  8:  148 
  • 7 Issell BF. Crooke ST. Cancer Treat. Rev.  1978,  5:  199 
  • 8a Chari RV. Martell BA. Gross JL. Cook SB. Shah SA. Blättler WA. McKenzie SJ. Goldmacher VS. Cancer Res.  1992,  52:  127 
  • 8b Okamoto K. Harada K. Ikeyama S. Iwasa S. Jpn. J. Cancer Res.  1992,  83:  761 
  • 8c Liu C. Tadayoni BM. Bourret LA. Mattocks KM. Derr SM. Widdison WC. Kedersha NL. Ariniello PD. Goldmacher VS. Lambert JM. Blättler WA. Chari RVJ. Proc. Nat. Acad. Sci. U.S.A.  1996,  93:  8618 
  • 9a These information were basically collected from semisynthetic work starting with the natural products as recently described by: Widdsion WC. Wilhelm SD. Cavanagh EE. Whiteman KR. Leece BA. Kovtun Y. Goldmacher VS. Xie H. Steeves RM. Lutz RJ. Zhao R. Wang L. Blättler WA. Chari RVJ. J. Med. Chem.  2006,  49:  4392 ; and in references 2a and 2e
  • 9b

    Recent review of total synthesis approaches is given in ref. 5b.

  • 10 Weist S. Süssmuth RD. Appl. Microbiol. Biotechnol.  2005,  68:  141 
  • 11 Frenzel T. Brünjes M. Quitschalle M. Kirschning A. Org. Lett.  2006,  8:  135 
  • 12 Kubota T. Brünjes M. Frenzel T. Xu J. Kirschning A. Floss HG. ChemBioChem  2006,  7:  1221 
  • 13 Yu T.-W. Bai L. Clade D. Hoffmann D. Toelzer S. Trinh KQ. Xu J. Moss SJ. Leistner E. Floss HG. Proc. Nat. Acad. Sci. U.S.A.  2002,  99:  7968 
  • 14 Kashin D. Meyer A. Wittenberg R. Schöning K.-U. Gommlich S. Kirschning A. Synthesis  2007,  304 
  • 15 Becker AM. Rickards RW. Brown RFC. Tetrahedron  1983,  39:  4189 
  • 16 Other vinylmetal species such as vinylstannane and vinylzinc only gave reduced yields of the coupling product in Pd(0)-catalyzed cross-coupling reactions: Pérez I. Pérez Sestelo J. Sarandeses LA. J. Am. Chem. Soc.  2001,  123:  4155 
  • 17 Andrus MB. Meredith EL. Soma Sekhar BBV. Org. Lett.  2001,  6:  259 
  • 18 Cabré J. Palomo AL. Synthesis  1984,  413 
  • 20a Gradillas A. Pérez-Castells J. Angew. Chem. Int. Ed.  2006,  45:  6086 ; Angew. Chem. 2006, 118, 6232
  • 20b Lemarchand A. Bach T. Synthesis  2005,  1977 
  • 20c McErlean CSP. Proisy N. Davis CJ. Boland NA. Sharp SY. Boxall K. Slawin AMZ. Workman P. Moody CJ. Org. Biomol. Chem.  2007,  5:  531 
  • We tested oxidation [(NH4)2Ce(NO3), MeCN] of the aromatic moiety present in the silyl-protected precursor of 6 but could only isolate the ortho-quinone 20 (Figure 2 in 71% yield instead of the para-quinone present in geldanamycin. See also:
  • 23a Andrus MB. Meredith EL. Hicken EJ. Simmons BL. Glancey RR. Ma W. J. Org. Chem.  2003,  68:  8162 
  • 23b Lemarchand A. Bach T. Tetrahedron  2004,  60:  9659 
19

General Procedure for the Preparation of Amides 17 and 19: Ketoacid 18 (1 equiv) was dissolved in CH2Cl2, then treated with BOPCl (1 equiv) and DIPEA (1 equiv) and stirred at r.t. for 3 h. A solution of aniline 8/9 (1 equiv) and DIPEA (1 equiv) in CH2Cl2 was added over a period of 2 h. After completion (ca. 18 h), the reaction was terminated by addition of aq phosphate buffer (pH 7) and CH2Cl2. The organic phases were combined, dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over silica eluting with hexanes-EtOAc (20:1) furnished the corresponding amide 17/19.
Spectroscopic data for 17: [α]D 20 -59.0 (c = 1.2, CHCl3). 1H NMR (400 MHz, CDCl3; CHCl3 = 7.26 ppm): δ = 7.69-7.71 (m, 4 H, OTBDPS), 7.50 (s, 1 H, NH), 7.33-7.43 (m, 6 H, OTBDPS), 6.95 (s, 1 H, ArH), 6.83 (s, 1 H, ArH), 6.27 (s, 1 H, ArH), 5.73 (ddt, J = 6.7, 10.2, 16.9 Hz, 1 H, 2′-H), 5.67 (ddd, J = 6.9, 10.3, 17.2 Hz, 1 H, 11-H), 5.44 (ddd, J = 1.3, 1.3, 17.2 Hz, 1 H, 12-H), 5.37 (ddd, J = 1.3, 1.3, 10.3 Hz, 1 H, 12-H′), 5.33-5.37 (m, 1 H, 5-H), 4.92 (ddd, J = 1.6, 1.6, 17.1 Hz, 1 H, 3′-H), 4.89 (ddd, J = 1.6, 1.6, 17.1 Hz, 1 H, 3′-H′), 4.39 (dd, J = 3.5, 7.3 Hz, 1 H, 3-H), 4.01-4.06 (m, 2 H, 7-H, 10-H), 3.33 (s, 3 H, 10-OCH3), 3.13 (s, 1 H, 1′-H), 3.12 (s 1 H, 1′-H′), 2.66 (dd, J = 6.7, 17.2 Hz, 1 H, 8-H), 2.57 (dd, J = 4.6, 17.2 Hz, 1 H, 8-H′), 2.47-2.52 (m, 1 H, 6-H), 2.42 (dd, J = 3.8, 13.8 Hz, 1 H, 2-H), 2.36 (dd, J = 7.8, 13.8 Hz, 1 H, 2-H′), 1.59 (d, J = 1.6 Hz, 3 H, 4-CH3), 1.08 (s, 9 H, OTBDPS), 0.86 (d, J = 7.0 Hz, 3 H, 6-CH3), 0.84 [s, 9 H, OSiC(CH3)3], 0.82 [s, 9 H, OSiC(CH3)3], 0.05 (s, 3 H, OSiCH3), -0.02 (s, 3 H, OSiCH3), -0.03 (s, 3 H, OSiCH3), -0.06 (s, 3 H, OSiCH3). 13C NMR (100 MHz, CDCl3 = 77.0 ppm): δ = 206.8 (s, C-9), 169.1 (s, C-1), 155.9 (s, Ar), 141.7 (s, Ar), 138.7 (s, Ar), 136.8 (d, C-2′), 136.5 (s, C-4), 135.5 (d, Ph), 132.9 (s, Ph), 132.4 (d, C-11), 129.8 (d, Ph), 128.3 (d, C-5), 127.7 (d, Ph), 120.3 (t, C-12), 115.9 (d, Ar), 115.8 (t, C-3′), 112.7 (d, Ar), 108.9 (d, Ar), 88.8 (d, C-10), 75.2 (d, C-3), 71.4 (d, C-7), 57.0 (q, 10-OCH3), 46.1 (t, C-2), 43.4 (t, C-8), 39.9 (t, C-1′), 38.2 (d, C-6), 26.5 [q, OSi(Ph2)C(CH3)3], 26.0 {q, OSi[(CH3)2]C(CH3)3}, 25.8 {q, OSi[(CH3)2]C(CH3)3}, 19.5 [s, OSi(Ph2)C(CH3)3], 18.1 {s, OSi[(CH3)2]C(CH3)3}, 18.0 {s, OSi[(CH3)2]C(CH3)3}, 16.2 (q, 6-CH3), 12.5 (q, 4-CH3), -4.5 [q, 2 × OSiC(CH3)3], -4.7 [q, OSiC(CH3)3], -5.2 [q, OSiC(CH3)3]. HRMS (ESI): m/z [M + H]+ calcd for C52H79Si3NO6: 898.5294; found: 898.5288. 19: [α]D 20 -37.5 (c = 0.8, CHCl3). 1H NMR (400 MHz, CDCl3; CHCl3 = 7.26 ppm): δ = 7.97 (s, 1 H, ArH), 7.77 (s, 1 H, NH), 5.99 (ddt, J = 6.1, 10.3, 16.7 Hz, 1 H, 2′-H), 5.68 (ddd, J = 6.9, 10.3, 17.2 Hz, 1 H, 11-H), 5.45 (ddd, J = 1.3, 1.3, 17.2 Hz, 1 H, 12-H), 5.40-5.43 (m, 1 H, 5-H), 5.38 (ddd, J = 1.3, 1.3, 10.3 Hz, 1 H, 12-H′), 5.00 (ddd, J = 1.6, 3.3, 10.3 Hz, 1 H, 3′-H), 4.89 (dd, J = 1.6, 3.3, 16.7 Hz, 1 H, 3′-H′), 4.51 (dd, J = 3.8, 8.2 Hz, 1 H, 3-H), 4.07 (dt, J = 5.0, 6.6 Hz, 1 H, 7-H), 4.05 (ddd, J = 1.3, 1.3, 6.9 Hz, 1 H, 10-H), 3.83 (s, 3 H, ArOCH3), 3.78 (s, 3 H, ArOCH3), 3.69 (s, 3 H, ArOCH3), 3.42 (dd, J = 1.4, 6.0 Hz, 2 H, 1′-H, 1′-H′), 3.34 (s, 3 H, 10-OCH3), 2.69 (dd, J = 6.6, 17.1 Hz, 1 H, 8-H), 2.60 (dd, J = 4.8, 17.1 Hz, 1 H, 8-H′), 2.50 (m, 1 H, 6-H), 2.51 (dd, J = 3.8, 13.7 Hz, 1 H, 2-H), 2.44 (dd, J = 8.2, 13.7 Hz, 1 H, 2-H′), 1.65 (d, J = 1.0 Hz, 3 H, 4-CH3), 0.85 (d, J = 4.4 Hz, 3 H, 6-CH3), 0.84 [s, 9 H, OSiC(CH3)3], 0.83 [s, 9 H, OSiC(CH3)3], 0.05 (s, 3 H, OSiCH3), 0.02 (s, 3 H, OSiCH3), 0.01 (s, 3 H, OSiCH3), -0.03 (s, 3 H, OSiCH3). 13C NMR (100 MHz, CDCl3 = 77.0 ppm): δ = 206.8 (s, C-9), 169.1 (s, C-1), 149.1 (s, Ar), 143.3 (s, Ar), 140.8 (s, Ar), 137.1 (s, C-2′), 136.4 (s, C-4), 132.4 (d, C-11), 128.4 (d, C-5), 127.4 (s, Ar), 126.4 (s, Ar), 120.3 (t, C-12), 115.0 (t, C-3′), 103.4 (d, Ar), 88.9 (d, C-10), 75.4 (d, C-3), 71.4 (d, C-7), 61.5 (q, ArOCH3), 60.9 (q, ArOCH3), 56.9 (q, 10-OCH3), 55.9 (q, ArOCH3), 46.5 (t, C-2), 43.4 (t, C-8), 38.1 (d, C-6), 28.7 (t, C-1′), 25.9 {q, OSi[(CH3)2]C(CH3)3}, 25.8 {q, OSi[(CH3)2]C(CH3)3}, 18.1 {s, OSi[(CH3)2]C(CH3)3}, 18.0 {s, OSi[(CH3)2]C(CH3)3}, 16.0 (q, 6-CH3), 12.4 (q, 4-CH3), -4.5 [q, 2 × OSiC(CH3)3], -4.6 [q, OSiC(CH3)3], -5.2 [q, OSiC(CH3)3]. HRMS (ESI): m/z [M + Na]+ calcd for C39H67Si2NO8: 756.4303; found: 756.4306.

21

Tetra-n-butylammonium fluoride (TBAF) turned out to be too basic for inducing the elimination of the siloxy group at C-3.

22

General Procedure for the Preparation of Macrocycles 5 and 6: Amide 17/19 (1 equiv) was dissolved in anhyd CH2Cl2, treated with Grubbs’ 2nd generation catalyst (0.2 equiv) and heated to reflux. After completion (ca. 6 h), the reaction was terminated by the addition of aq phosphate buffer (pH 7). The organic phases were combined, dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over silica with hexanes-EtOAc (20:1) as eluent yielded the corresponding protected macrolactams which were dissolved in anhyd THF and treated with HF·Py (ca. 70% HF, excess) at r.t. After completion (ca. 16 h), the reaction mixture was neutralized with a sat. NaHCO3 solution. The aqueous phase was extracted with EtOAc, the organic phases were combined, dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over silica with CH2Cl2-MeOH (50:1) as eluent yielded the corresponding macrolactam 5/6.
Spectroscopic data for 5: [α]D 20 -134.6 (c = 1.0, MeOH). 1H NMR (400 MHz, CD3OD; CH3OH = 3.31 ppm): δ = 7.90 (s, 1 H, NH), 7.10 (dd, J = 1.6, 1.6 Hz, 1 H, ArH), 6.51 (dd, J = 2.1, 2.1 Hz, 1 H, ArH), 6.39 (dd, J = 1.6, 2.1 Hz, 1 H, ArH), 6.06 (dddd, J = 0.9, 6.7, 8.0, 15.5 Hz, 1 H, 12-H), 5.41 (psd, J = 9.3 Hz, 1 H, 5-H), 5.26 (ddt, J = 1.1, 8.1, 15.5 Hz, 1 H, 11-H), 4.31-4.37 (m, 2 H, 3-H, 10-H), 3.96 (ddd, J = 3.6, 8.5, 8.5 Hz, 1 H, 7-H), 3.32-3.35 (m, 2 H, 13-H, 13-H′), 3.33 (s, 3 H, 10-OCH3), 2.75 (dd, J = 3.6, 13.7 Hz, 1 H, 2-H), 2.62 (dd, J = 6.6, 13.7 Hz, 1 H, 2-H), 2.50-2.54 (m, 2 H, 8-H, 8-H′), 2.44-2.49 (m, 1 H, 6-H), 1.66 (d, J = 0.9 Hz, 3 H, 4-CH3), 0.96 (d, J = 6.3 Hz, 3 H, 6-CH3). 13C NMR (100 MHz, CD3OD = 49.0 ppm): δ = 209.2 (s, C-9), 171.5 (s, C-1), 158.9 (s, Ar), 142.5 (s, Ar), 140.4 (s, Ar), 138.7 (s, C-4), 137.9 (d, C-12), 127.0 (d, C-5), 126.7 (d, C-11), 113.1 (d, Ar), 112.9 (d, Ar), 105.7 (d, Ar), 89.9 (d, C-10), 74.3 (d, C-7), 73.0 (d, C-3), 57.0 (q, 10-OCH3), 44.7 (t, C-8), 42.6 (t, C-2), 40.0 (d, C-6), 39.3 (t, C-13), 17.7 (q, 6-CH3), 14.7 (q, 4-CH3). HRMS (ESI): m/z [M - H+] calcd for C22H29NO6: 402.1917; found: 402.1923.
6: 1H NMR (400 MHz, CD3OD; CH3OH = 3.31 ppm): δ = 8.01 (t, J = 1.51 Hz, 1 H, ArH), 5.92 (dddd, J = 0.6, 3.4, 7.9, 15.5 Hz, 1 H, 12-H), 5.58 (psd, J = 8.5 Hz, 1 H, 5-H), 5.26 (dd, J = 7.0, 15.5 Hz, 1 H, 11-H), 4.40 (m, 1 H, 3-H), 4.21 (d, J = 7.0 Hz, 1 H, 10-H), 3.93 (ddd, J = 1.6, 8.9, 10.5 Hz, 1 H, 7-H), 3.82 (s, 3 H, ArOCH3), 3.70-3.81 (m, 1 H, 13-H), 3.75 (s, 3 H, ArOCH3), 3.68 (s, 3 H, ArOCH3), 3.33 (s, 3 H, 10-OCH3), 3.13-3.26 (m, 1 H, 13-H′), 2.92 (dd, J = 4.5, 16.7 Hz, 1 H, 2-H), 2.77 (dd, J = 3.1, 16.7 Hz, 1 H, 2-H′), 2.54 (dd, J = 1.6, 16.9 Hz, 1 H, 8-H), 2.29 (dd, J = 10.5, 16.9, 10.5 Hz, 1 H, 8-H′), 2.31 (m, 1 H, 6-H), 1.62 (s, 3 H, 4-CH3), 1.01 (d, J = 6.3 Hz, 3 H, 6-CH3). 13C NMR (100 MHz, CD3OD = 49.0 ppm): δ = 208.2 (s, C-9), 171.8 (s, C-1), 150.5 (s, Ar), 143.9 (s, Ar), 142.7 (s, Ar), 136.8 (s, Ar), 134.3 (d, C-12), 129.5 (s, C-4), 127.4 (d, C-5), 127.3 (s, Ar), 125.0 (d, C-11), 104.5 (d, Ar), 88.7 (d, C-10), 72.9 (d, C-7), 70.7 (d, C-3), 61.7 (q, ArOCH3), 61.4 (q, ArOCH3), 57.3 (q, 10-CH3), 56.4 (q, ArOCH3), 44.9 (t, C-2), 42.6 (t, C-8), 39.4 (d, C-6), 27.9 (t, C-13), 18.1 (q, 6-CH3), 14.4 (q, 4-CH3). HRMS (ESI): m/z [M + Na+] calcd for C25H35NO8: 500.2260; found: 500.2260.

24

Meyer, A.; Brünjes, M.; Taft, F.; Frenzel, F.; Sasse, F.; Kirschning, A.; unpublished results.