References and Notes
1a
Kupchan SM.
Komoda Y.
Court WA.
Thomas GJ.
Smith RM.
Karim A.
Gilmore CJ.
Haltiwanger RC.
Bryan RF.
J. Am. Chem. Soc.
1972,
94:
1354
1b
Kupchan SM.
Komoda Y.
Branfman AR.
Sneden AT.
Court WA.
Thomas GJ.
Hintz HPJ.
Smith RM.
Karim A.
Howie GA.
Verma AK.
Nagao Y.
Dailey RG.
Zimmerly VA.
Sumner WC.
J. Org. Chem.
1977,
42:
2349
1c
Bryan RF.
Gilmore CJ.
Haltiwanger RC.
J. Chem. Soc., Perkin Trans. 2
1973,
897
Also from two other plant families (Colubrina texensis, Rhamnaceae and Trewia nudiflora, Euphorbiaceae) maytansinoids were isolated:
2a
Reider PJ.
Roland DM.
Maytansinoids In The Alkaloids
Vol. 23:
Brossi A.
Academic Press;
New York:
1984.
p.71-156
2b
Wani MC.
Taylor HL.
Wall ME.
J. Chem. Soc., Chem. Commun.
1973,
390
2c
Powell RG.
Weisleder D.
Smith CR.
Kozlowski J.
Rohwedder WK.
J. Am. Chem. Soc.
1982,
104:
4929
2d
Powell RG.
Smith CR.
Plattner RD.
Jones BE.
J. Nat. Prod.
1983,
46:
660
2e
Smith CR.
Powell RG. In
Chemistry and Pharmacology of Maytansinoid Alkaloids in Alkaloids
Vol. 2:
Pelletier SW.
John Wiley and Sons;
New York:
1984.
p.149-204
3a
Higashide E.
Asai M.
Ootsu K.
Tanida S.
Kozai Y.
Hasegawa T.
Kishi T.
Sugino Y.
Yoneda M.
Nature (London)
1977,
270:
721
3b
Asai M.
Mizuta E.
Izawa M.
Haibara K.
Kishi T.
Tetrahedron
1979,
35:
1079
A mutant of A. pretiosum spp. auranticum provided 15 additional ansamitocines:
4a
Izawa M.
Tanida S.
Asai M.
J. Antibiot.
1981,
34:
496
4b
Komoda Y.
Kishi T.
Maytansinoids, In Anticancer Agents Based on Natural Product Models
Douros J.
Cassady JM.
Academic Press;
New York:
1980.
p.353-389
5a
Rinehart KL.
Shield LS.
Fortschr. Chem. Org. Naturst.
1976,
33:
231
5b
Cassady JM.
Chan KK.
Floss HG.
Leistner E.
Chem. Pharm. Bull.
2004,
52:
1
6a
Thigpen JT.
Ehrlich CE.
Creasman WT.
Curry S.
Blessing JA.
Am. J. Clin. Oncol. (CCT)
1985,
6:
273
6b
Thigpen JT.
Ehrlich CE.
Conroy J.
Blessing JA.
Am. J. Clin. Oncol. (CCT)
1985,
6:
427
6c
Ravry MJ.
Omura GA.
Birch R.
Am J. Clin. Oncol. (CCT)
1985,
8:
148
7
Issell BF.
Crooke ST.
Cancer Treat. Rev.
1978,
5:
199
8a
Chari RV.
Martell BA.
Gross JL.
Cook SB.
Shah SA.
Blättler WA.
McKenzie SJ.
Goldmacher VS.
Cancer Res.
1992,
52:
127
8b
Okamoto K.
Harada K.
Ikeyama S.
Iwasa S.
Jpn. J. Cancer Res.
1992,
83:
761
8c
Liu C.
Tadayoni BM.
Bourret LA.
Mattocks KM.
Derr SM.
Widdison WC.
Kedersha NL.
Ariniello PD.
Goldmacher VS.
Lambert JM.
Blättler WA.
Chari RVJ.
Proc. Nat. Acad. Sci. U.S.A.
1996,
93:
8618
9a These information were basically collected from semisynthetic work starting with the natural products as recently described by: Widdsion WC.
Wilhelm SD.
Cavanagh EE.
Whiteman KR.
Leece BA.
Kovtun Y.
Goldmacher VS.
Xie H.
Steeves RM.
Lutz RJ.
Zhao R.
Wang L.
Blättler WA.
Chari RVJ.
J. Med. Chem.
2006,
49:
4392 ; and in references 2a and 2e
9b Recent review of total synthesis approaches is given in ref. 5b.
10
Weist S.
Süssmuth RD.
Appl. Microbiol. Biotechnol.
2005,
68:
141
11
Frenzel T.
Brünjes M.
Quitschalle M.
Kirschning A.
Org. Lett.
2006,
8:
135
12
Kubota T.
Brünjes M.
Frenzel T.
Xu J.
Kirschning A.
Floss HG.
ChemBioChem
2006,
7:
1221
13
Yu T.-W.
Bai L.
Clade D.
Hoffmann D.
Toelzer S.
Trinh KQ.
Xu J.
Moss SJ.
Leistner E.
Floss HG.
Proc. Nat. Acad. Sci. U.S.A.
2002,
99:
7968
14
Kashin D.
Meyer A.
Wittenberg R.
Schöning K.-U.
Gommlich S.
Kirschning A.
Synthesis
2007,
304
15
Becker AM.
Rickards RW.
Brown RFC.
Tetrahedron
1983,
39:
4189
16 Other vinylmetal species such as vinylstannane and vinylzinc only gave reduced yields of the coupling product in Pd(0)-catalyzed cross-coupling reactions: Pérez I.
Pérez Sestelo J.
Sarandeses LA.
J. Am. Chem. Soc.
2001,
123:
4155
17
Andrus MB.
Meredith EL.
Soma Sekhar BBV.
Org. Lett.
2001,
6:
259
18
Cabré J.
Palomo AL.
Synthesis
1984,
413
19
General Procedure for the Preparation of Amides 17 and 19: Ketoacid 18 (1 equiv) was dissolved in CH2Cl2, then treated with BOPCl (1 equiv) and DIPEA (1 equiv) and stirred at r.t. for 3 h. A solution of aniline 8/9 (1 equiv) and DIPEA (1 equiv) in CH2Cl2 was added over a period of 2 h. After completion (ca. 18 h), the reaction was terminated by addition of aq phosphate buffer (pH 7) and CH2Cl2. The organic phases were combined, dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over silica eluting with hexanes-EtOAc (20:1) furnished the corresponding amide 17/19.
Spectroscopic data for 17: [α]D
20 -59.0 (c = 1.2, CHCl3). 1H NMR (400 MHz, CDCl3; CHCl3 = 7.26 ppm): δ = 7.69-7.71 (m, 4 H, OTBDPS), 7.50 (s, 1 H, NH), 7.33-7.43 (m, 6 H, OTBDPS), 6.95 (s, 1 H, ArH), 6.83 (s, 1 H, ArH), 6.27 (s, 1 H, ArH), 5.73 (ddt, J = 6.7, 10.2, 16.9 Hz, 1 H, 2′-H), 5.67 (ddd, J = 6.9, 10.3, 17.2 Hz, 1 H, 11-H), 5.44 (ddd, J = 1.3, 1.3, 17.2 Hz, 1 H, 12-H), 5.37 (ddd, J = 1.3, 1.3, 10.3 Hz, 1 H, 12-H′), 5.33-5.37 (m, 1 H, 5-H), 4.92 (ddd, J = 1.6, 1.6, 17.1 Hz, 1 H, 3′-H), 4.89 (ddd, J = 1.6, 1.6, 17.1 Hz, 1 H, 3′-H′), 4.39 (dd, J = 3.5, 7.3 Hz, 1 H, 3-H), 4.01-4.06 (m, 2 H, 7-H, 10-H), 3.33 (s, 3 H, 10-OCH3), 3.13 (s, 1 H, 1′-H), 3.12 (s 1 H, 1′-H′), 2.66 (dd, J = 6.7, 17.2 Hz, 1 H, 8-H), 2.57 (dd, J = 4.6, 17.2 Hz, 1 H, 8-H′), 2.47-2.52 (m, 1 H, 6-H), 2.42 (dd, J = 3.8, 13.8 Hz, 1 H, 2-H), 2.36 (dd, J = 7.8, 13.8 Hz, 1 H, 2-H′), 1.59 (d, J = 1.6 Hz, 3 H, 4-CH3), 1.08 (s, 9 H, OTBDPS), 0.86 (d, J = 7.0 Hz, 3 H, 6-CH3), 0.84 [s, 9 H, OSiC(CH3)3], 0.82 [s, 9 H, OSiC(CH3)3], 0.05 (s, 3 H, OSiCH3), -0.02 (s, 3 H, OSiCH3), -0.03 (s, 3 H, OSiCH3), -0.06 (s, 3 H, OSiCH3). 13C NMR (100 MHz, CDCl3 = 77.0 ppm): δ = 206.8 (s, C-9), 169.1 (s, C-1), 155.9 (s, Ar), 141.7 (s, Ar), 138.7 (s, Ar), 136.8 (d, C-2′), 136.5 (s, C-4), 135.5 (d, Ph), 132.9 (s, Ph), 132.4 (d, C-11), 129.8 (d, Ph), 128.3 (d, C-5), 127.7 (d, Ph), 120.3 (t, C-12), 115.9 (d, Ar), 115.8 (t, C-3′), 112.7 (d, Ar), 108.9 (d, Ar), 88.8 (d, C-10), 75.2 (d, C-3), 71.4 (d, C-7), 57.0 (q, 10-OCH3), 46.1 (t, C-2), 43.4 (t, C-8), 39.9 (t, C-1′), 38.2 (d, C-6), 26.5 [q, OSi(Ph2)C(CH3)3], 26.0 {q, OSi[(CH3)2]C(CH3)3}, 25.8 {q, OSi[(CH3)2]C(CH3)3}, 19.5 [s, OSi(Ph2)C(CH3)3], 18.1 {s, OSi[(CH3)2]C(CH3)3}, 18.0 {s, OSi[(CH3)2]C(CH3)3}, 16.2 (q, 6-CH3), 12.5 (q, 4-CH3), -4.5 [q, 2 × OSiC(CH3)3], -4.7 [q, OSiC(CH3)3], -5.2 [q, OSiC(CH3)3]. HRMS (ESI): m/z [M + H]+ calcd for C52H79Si3NO6: 898.5294; found: 898.5288. 19: [α]D
20 -37.5 (c = 0.8, CHCl3). 1H NMR (400 MHz, CDCl3; CHCl3 = 7.26 ppm): δ = 7.97 (s, 1 H, ArH), 7.77 (s, 1 H, NH), 5.99 (ddt, J = 6.1, 10.3, 16.7 Hz, 1 H, 2′-H), 5.68 (ddd, J = 6.9, 10.3, 17.2 Hz, 1 H, 11-H), 5.45 (ddd, J = 1.3, 1.3, 17.2 Hz, 1 H, 12-H), 5.40-5.43 (m, 1 H, 5-H), 5.38 (ddd, J = 1.3, 1.3, 10.3 Hz, 1 H, 12-H′), 5.00 (ddd, J = 1.6, 3.3, 10.3 Hz, 1 H, 3′-H), 4.89 (dd, J = 1.6, 3.3, 16.7 Hz, 1 H, 3′-H′), 4.51 (dd, J = 3.8, 8.2 Hz, 1 H, 3-H), 4.07 (dt, J = 5.0, 6.6 Hz, 1 H, 7-H), 4.05 (ddd, J = 1.3, 1.3, 6.9 Hz, 1 H, 10-H), 3.83 (s, 3 H, ArOCH3), 3.78 (s, 3 H, ArOCH3), 3.69 (s, 3 H, ArOCH3), 3.42 (dd, J = 1.4, 6.0 Hz, 2 H, 1′-H, 1′-H′), 3.34 (s, 3 H, 10-OCH3), 2.69 (dd, J = 6.6, 17.1 Hz, 1 H, 8-H), 2.60 (dd, J = 4.8, 17.1 Hz, 1 H, 8-H′), 2.50 (m, 1 H, 6-H), 2.51 (dd, J = 3.8, 13.7 Hz, 1 H, 2-H), 2.44 (dd, J = 8.2, 13.7 Hz, 1 H, 2-H′), 1.65 (d, J = 1.0 Hz, 3 H, 4-CH3), 0.85 (d, J = 4.4 Hz, 3 H, 6-CH3), 0.84 [s, 9 H, OSiC(CH3)3], 0.83 [s, 9 H, OSiC(CH3)3], 0.05 (s, 3 H, OSiCH3), 0.02 (s, 3 H, OSiCH3), 0.01 (s, 3 H, OSiCH3), -0.03 (s, 3 H, OSiCH3). 13C NMR (100 MHz, CDCl3 = 77.0 ppm): δ = 206.8 (s, C-9), 169.1 (s, C-1), 149.1 (s, Ar), 143.3 (s, Ar), 140.8 (s, Ar), 137.1 (s, C-2′), 136.4 (s, C-4), 132.4 (d, C-11), 128.4 (d, C-5), 127.4 (s, Ar), 126.4 (s, Ar), 120.3 (t, C-12), 115.0 (t, C-3′), 103.4 (d, Ar), 88.9 (d, C-10), 75.4 (d, C-3), 71.4 (d, C-7), 61.5 (q, ArOCH3), 60.9 (q, ArOCH3), 56.9 (q, 10-OCH3), 55.9 (q, ArOCH3), 46.5 (t, C-2), 43.4 (t, C-8), 38.1 (d, C-6), 28.7 (t, C-1′), 25.9 {q, OSi[(CH3)2]C(CH3)3}, 25.8 {q, OSi[(CH3)2]C(CH3)3}, 18.1 {s, OSi[(CH3)2]C(CH3)3}, 18.0 {s, OSi[(CH3)2]C(CH3)3}, 16.0 (q, 6-CH3), 12.4 (q, 4-CH3), -4.5 [q, 2 × OSiC(CH3)3], -4.6 [q, OSiC(CH3)3], -5.2 [q, OSiC(CH3)3]. HRMS (ESI): m/z [M + Na]+ calcd for C39H67Si2NO8: 756.4303; found: 756.4306.
20a
Gradillas A.
Pérez-Castells J.
Angew. Chem. Int. Ed.
2006,
45:
6086 ; Angew. Chem. 2006, 118, 6232
20b
Lemarchand A.
Bach T.
Synthesis
2005,
1977
20c
McErlean CSP.
Proisy N.
Davis CJ.
Boland NA.
Sharp SY.
Boxall K.
Slawin AMZ.
Workman P.
Moody CJ.
Org. Biomol. Chem.
2007,
5:
531
21 Tetra-n-butylammonium fluoride (TBAF) turned out to be too basic for inducing the elimination of the siloxy group at C-3.
22
General Procedure for the Preparation of Macrocycles 5 and 6: Amide 17/19 (1 equiv) was dissolved in anhyd CH2Cl2, treated with Grubbs’ 2nd generation catalyst (0.2 equiv) and heated to reflux. After completion (ca. 6 h), the reaction was terminated by the addition of aq phosphate buffer (pH 7). The organic phases were combined, dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over silica with hexanes-EtOAc (20:1) as eluent yielded the corresponding protected macrolactams which were dissolved in anhyd THF and treated with HF·Py (ca. 70% HF, excess) at r.t. After completion (ca. 16 h), the reaction mixture was neutralized with a sat. NaHCO3 solution. The aqueous phase was extracted with EtOAc, the organic phases were combined, dried over Na2SO4 and the solvent was removed under reduced pressure. Flash column chromatography over silica with CH2Cl2-MeOH (50:1) as eluent yielded the corresponding macrolactam 5/6.
Spectroscopic data for 5: [α]D
20 -134.6 (c = 1.0, MeOH). 1H NMR (400 MHz, CD3OD; CH3OH = 3.31 ppm): δ = 7.90 (s, 1 H, NH), 7.10 (dd, J = 1.6, 1.6 Hz, 1 H, ArH), 6.51 (dd, J = 2.1, 2.1 Hz, 1 H, ArH), 6.39 (dd, J = 1.6, 2.1 Hz, 1 H, ArH), 6.06 (dddd, J = 0.9, 6.7, 8.0, 15.5 Hz, 1 H, 12-H), 5.41 (psd, J = 9.3 Hz, 1 H, 5-H), 5.26 (ddt, J = 1.1, 8.1, 15.5 Hz, 1 H, 11-H), 4.31-4.37 (m, 2 H, 3-H, 10-H), 3.96 (ddd, J = 3.6, 8.5, 8.5 Hz, 1 H, 7-H), 3.32-3.35 (m, 2 H, 13-H, 13-H′), 3.33 (s, 3 H, 10-OCH3), 2.75 (dd, J = 3.6, 13.7 Hz, 1 H, 2-H), 2.62 (dd, J = 6.6, 13.7 Hz, 1 H, 2-H), 2.50-2.54 (m, 2 H, 8-H, 8-H′), 2.44-2.49 (m, 1 H, 6-H), 1.66 (d, J = 0.9 Hz, 3 H, 4-CH3), 0.96 (d, J = 6.3 Hz, 3 H, 6-CH3). 13C NMR (100 MHz, CD3OD = 49.0 ppm): δ = 209.2 (s, C-9), 171.5 (s, C-1), 158.9 (s, Ar), 142.5 (s, Ar), 140.4 (s, Ar), 138.7 (s, C-4), 137.9 (d, C-12), 127.0 (d, C-5), 126.7 (d, C-11), 113.1 (d, Ar), 112.9 (d, Ar), 105.7 (d, Ar), 89.9 (d, C-10), 74.3 (d, C-7), 73.0 (d, C-3), 57.0 (q, 10-OCH3), 44.7 (t, C-8), 42.6 (t, C-2), 40.0 (d, C-6), 39.3 (t, C-13), 17.7 (q, 6-CH3), 14.7 (q, 4-CH3). HRMS (ESI): m/z [M - H+] calcd for C22H29NO6: 402.1917; found: 402.1923.
6: 1H NMR (400 MHz, CD3OD; CH3OH = 3.31 ppm): δ = 8.01 (t, J = 1.51 Hz, 1 H, ArH), 5.92 (dddd, J = 0.6, 3.4, 7.9, 15.5 Hz, 1 H, 12-H), 5.58 (psd, J = 8.5 Hz, 1 H, 5-H), 5.26 (dd, J = 7.0, 15.5 Hz, 1 H, 11-H), 4.40 (m, 1 H, 3-H), 4.21 (d, J = 7.0 Hz, 1 H, 10-H), 3.93 (ddd, J = 1.6, 8.9, 10.5 Hz, 1 H, 7-H), 3.82 (s, 3 H, ArOCH3), 3.70-3.81 (m, 1 H, 13-H), 3.75 (s, 3 H, ArOCH3), 3.68 (s, 3 H, ArOCH3), 3.33 (s, 3 H, 10-OCH3), 3.13-3.26 (m, 1 H, 13-H′), 2.92 (dd, J = 4.5, 16.7 Hz, 1 H, 2-H), 2.77 (dd, J = 3.1, 16.7 Hz, 1 H, 2-H′), 2.54 (dd, J = 1.6, 16.9 Hz, 1 H, 8-H), 2.29 (dd, J = 10.5, 16.9, 10.5 Hz, 1 H, 8-H′), 2.31 (m, 1 H, 6-H), 1.62 (s, 3 H, 4-CH3), 1.01 (d, J = 6.3 Hz, 3 H, 6-CH3). 13C NMR (100 MHz, CD3OD = 49.0 ppm): δ = 208.2 (s, C-9), 171.8 (s, C-1), 150.5 (s, Ar), 143.9 (s, Ar), 142.7 (s, Ar), 136.8 (s, Ar), 134.3 (d, C-12), 129.5 (s, C-4), 127.4 (d, C-5), 127.3 (s, Ar), 125.0 (d, C-11), 104.5 (d, Ar), 88.7 (d, C-10), 72.9 (d, C-7), 70.7 (d, C-3), 61.7 (q, ArOCH3), 61.4 (q, ArOCH3), 57.3 (q, 10-CH3), 56.4 (q, ArOCH3), 44.9 (t, C-2), 42.6 (t, C-8), 39.4 (d, C-6), 27.9 (t, C-13), 18.1 (q, 6-CH3), 14.4 (q, 4-CH3). HRMS (ESI): m/z [M + Na+] calcd for C25H35NO8: 500.2260; found: 500.2260.
We tested oxidation [(NH4)2Ce(NO3), MeCN] of the aromatic moiety present in the silyl-protected precursor of 6 but could only isolate the ortho-quinone 20 (Figure 2 in 71% yield instead of the para-quinone present in geldanamycin. See also:
23a
Andrus MB.
Meredith EL.
Hicken EJ.
Simmons BL.
Glancey RR.
Ma W.
J. Org. Chem.
2003,
68:
8162
23b
Lemarchand A.
Bach T.
Tetrahedron
2004,
60:
9659
24 Meyer, A.; Brünjes, M.; Taft, F.; Frenzel, F.; Sasse, F.; Kirschning, A.; unpublished results.