Subscribe to RSS
DOI: 10.1055/s-2007-980368
Novel Solid-Phase Synthetic Method for Combinatorial Generation of a 4-Hydroxyquinolin-2(1H)-one-Based Library
Publication History
Publication Date:
23 May 2007 (online)
![](https://www.thieme-connect.de/media/synlett/200709/lookinside/thumbnails/10.1055-s-2007-980368-1.jpg)
Abstract
Utilizing polymer-bound anthranilic acid derivatives, we were able to obtain 4-hydroxyquinolin-2(1H)-ones in 50-99% five- or six-step overall yields and 65-95% purities through the adaptation of a Dieckmann-type condensation reaction to a C-C bond-forming cyclative cleavage step. The reactions on solid phase were monitored by on-bead ATR-FTIR spectroscopic methods, colorimetric tests, and/or cleavage experiments.
Key words
combinatorial chemistry - solid-phase synthesis - quinolinone - Dieckmann condensation - cyclative cleavage
- 1
Dolle RE.Le Bourdonnec B.Morales GA.Moriarty KJ.Salvino JM. J. Comb. Chem. 2006, 8: 597 -
2a
Gordon EM.Gallop MA.Patel DV. Acc. Chem. Res. 1996, 29: 144 -
2b
Tempest PA.Armstrong RW. J. Am. Chem. Soc. 1997, 119: 7607 -
2c
Ding S.Gray NS.Wu X.Ding Q.Schultz PG. J. Am. Chem. Soc. 2002, 124: 1594 -
2d
Burke MD.Schreiber SL. Angew. Chem. Int. Ed. 2004, 43: 46 -
2e
Marzinzik AL.Felder ER. J. Org. Chem. 1998, 63: 723 -
3a
Jeon M.-K.Kim D.-S.La HJ.Ha D.-C.Gong Y.-D. Tetrahedron Lett. 2005, 46: 7477 -
3b
Jeon M.-K.Kim D.-S.La HJ.Gong Y.-D. Tetrahedron Lett. 2005, 46: 4979 -
4a
Rowley M.Kulagowski JJ.Watt AP.Rathbone D.Stevenson GI.Carling RW.Baker R.Marshall GR.Kemp JA.Foster AC.Grimwood S.Hargreaves R.Hurley C.Saywell KL.Tricklebank MD.Leeson PD. J. Med. Chem. 1997, 40: 4053 -
4b
Hayashi H.Miwa Y.Ichikawa S.Yoda N.Miki I.Ishii A.Kono M.Yasuzawa T.Suzuki F. J. Med. Chem. 1993, 36: 617 -
4c
DeVita RJ.Walsh TF.Young JR.Jiang J.Ujjainwalla F.Toupence RB.Parikh M.Huang SX.Fair JA.Goulet MT.Wyvratt MJ.Lo J.-L.Ren N.Yudkovitz JB.Yang YT.Cheng K.Cui J.Mount G.Rohrer SP.Schaeffer JM.Rhodes L.Drisko JE.McGowan E.MacIntyre DE.Vincent S.Carlin JR.Cameron J.Smith RG. J. Med. Chem. 2001, 44: 917 -
4d
Khan SR.Mhaka A.Pili R.Isaacs JT. Bioorg. Med. Chem. Lett. 2001, 11: 451 -
4e
Tsuji K.Spears GW.Nakamura K.Tojo T.Seki N.Sugiyama A.Matsuo M. Bioorg. Med. Chem. Lett. 2002, 12: 85 - For examples, see:
-
5a
Laschober R.Stadlbauer W. Liebigs Ann. Chem. 1990, 1083 -
5b
Lange JHM.Verveer PC.Osnabrug SJM.Visser GM. Tetrahedron Lett. 2001, 42: 1367 -
5c
Xiao Z.Waters NC.Woodard CL.Li Z.Li P.-K. Bioorg. Med. Chem. Lett. 2001, 11: 2875 - For examples, see:
-
6a
Ukrainets IV.Taran SG.Gorokhova OV.Kodolova OL.Turov AV. Khim. Geterotsikl. Soedin 1997, 33: 928 -
6b
Kulkarni BA.Ganesan A. Chem. Commun. 1998, 785 -
6c
DeVita RJ.Goulet MT.Wyvratt MJ.Fisher MH.Lo J.-L.Yang YT.Cheng K.Smith RG. Bioorg. Med. Chem. Lett. 1999, 9: 2621 -
6d
Walsh TF.Toupence RB.Young JR.Huang SX.Ujjainwalla F.DeVita RJ.Goulet MT.Wyvratt MJ.Fisher MH.Lo J.-L.Ren N.Yudkovitz JB.Yang YT.Cheng K.Smith RG. Bioorg. Med. Chem. Lett. 2000, 10: 443 -
6e
Spears GW.Tsuji K.Tojo T.Nishimura H.Ogino T. J. Heterocycl. Chem. 2002, 39: 799 - For examples, see:
-
7a
Ismaili L.Refouvelet B.Robert JF. J. Heterocycl. Chem. 1999, 36: 719 -
7b
Tojo T.Spears GW.Tsuji K.Nishimura H.Ogino T.Seki N.Sugiyama A.Matsuo M. Bioorg. Med. Chem. Lett. 2002, 12: 2427 -
7c
Mitsos CA.Zografos AL.Igglessi-Markopoulou O. J. Org. Chem. 2003, 68: 4567 -
8a
Borowiec H.Grochowski J.Serda P. J. Chem. Res., Synop. 1996, 248 -
8b
El Kihel A.Benchidmi M.Essassi EM.Bauchat P.Danion-Bougot R. Synth. Commun. 1999, 29: 2435 -
8c
Jung J.-C.Jung Y.-J.Park O.-S. Synth. Commun. 2001, 31: 1195 -
8d
Jung J.-C.Jung Y.-J.Park O.-S. J. Heterocycl. Chem. 2001, 38: 61 -
9a
Sim MM.Lee CL.Ganesan A. Tetrahedron Lett. 1998, 39: 6399 -
9b
Xu C.Yang L.Bhandari A.Holmes CP. Tetrahedron Lett. 2006, 47: 4885 : The recent report described the solid-phase synthesis of 3-carbomethoxy-4-hydoxyquinolin-2(1H)-one bound to a resin through the bonding to nitrogen at 1-position as an intermediate resin for introduction of carbon-based substituents at 4-position of quinolin-2(1H)-one skeleton - In addition to commercially available 2-nitrobenzoic acids, they can be prepared from the regioselective nitration of benzoic acids, the oxidation of o-nitrotoluenes, 2-nitrobenzyl alcohols, 2-nitrobenzaldehydes, and 2′-nitroacetophenones, and the substitutions of halogenated 2-nitrobenzoic acids. On the other hand, variation of the X group would be possible for the resin-bound 2-nitrobenzoic acid derivatives 6 and will be reported elsewhere. For examples of the nitration, see ref. 8d and:
-
10a
Coppola GM.Schuster HF. J. Heterocycl. Chem. 1989, 26: 957 -
10b
Cotelle P.Catteau JP. Synth. Commun. 1996, 26: 4105 -
10c
Thurston DE.Bose DS.Thompson AS.Howard PW.Leoni A.Croker SJ.Jenkins TC.Neidle S.Hartley JA.Hurley LH. J. Org. Chem. 1996, 61: 8141 -
10d
Gregson SJ.Howard PW.Thurston DE. Bioorg. Med. Chem. Lett. 2003, 13: 2277 - For examples of the oxidation, see:
-
10e
Yamazaki S. Synth. Commun. 1999, 29: 2211 -
10f
Sawatari N.Sakaguchi S.Ishii Y. Tetrahedron Lett. 2003, 44: 2053 -
10g
Venturello C.Cambaro M. J. Org. Chem. 1991, 56: 5924 -
10h
Singh M.Singh KN.Dwivedi S.Misra RA. Synthesis 1991, 291 -
10i
Das S.Punniyamurthy T. Tetrahedron Lett. 2003, 44: 6033 -
10j
De Luca L.Giacomelli G.Masala S.Porcheddu A. J. Org. Chem. 2003, 68: 4999 -
10k
Madler MM.Klucik J.Soell PS.Brown CW.Liu S.Berlin KD.Benbrook DM.Birckbichler PJ.Nelson EC. Org. Prep. Proced. Int. 1998, 30: 230 -
10l
Roy A.Reddy KR.Mohanta PK.Ila H.Junjappa H. Synth. Commun. 1999, 29: 3781 -
10m
Anjum A.Srinivas P. Chem. Lett. 2001, 900 -
10n
Balicki R. Synth. Commun. 2001, 31: 2195 -
10o
For an example of the substitution, see ref. 4e.
- 11
Yan B. Acc. Chem. Res. 1998, 31: 621 - With respect to acylation of N-alkylanthranilates with acetic acids, the conditions used in solution phase were pivaloyl chloride, pyridine, and MS in CH2Cl2 at r.t. for coupling of 2-methylaminobenzoates with thiocarbamoylacetic acids,6e EDC in THF at r.t. for reaction of 2-methylaminobenzoates with mono-tert-butyl malonate and cyanoacetic acid, and in POCl3 at 80 °C for the reaction of benzyl 2-benzylamino-benzoate and (3-methylisoxazol-5-yl)acetic acid. See:
-
12a
Blackburn C.LaMarche MJ.Brown J.Che JL.Cullis CA.Lai S.Maguire M.Marsilje T.Geddes B.Govek E.Kadambi V.Doherty C.Brian D.Brodjian S.Marsh KC.Collins CA.Kym PR. Bioorg. Med. Chem. Lett. 2006, 16: 2621 -
12b
Wall MJ,Player MR,Patch RJ,Meegalla S,Liu J,Illig CR,Cheung W,Chen J, andAsgari D. inventors; WO 2005009967. ; Chem. Abstr. 2005, 142, 197893 - 13
Gaggini F.Porcheddu A.Reginato G.Rodriquez M.Taddei M. J. Comb. Chem. 2004, 6: 805 - Since the seminal contributions of Rapoport to the solid-phase unidirectional Dieckmann reaction, Dieckmann-type condensation reaction has been utilized for the solid-phase synthesis of tetramic acid derivatives. See:
-
14a
Crowley JI.Rapoport H. J. Am. Chem. Soc. 1970, 92: 6363 -
14b
Crowley JI.Rapoport H. J. Org. Chem. 1980, 45: 3215 -
14c
Matthews J.Rivero RA. J. Org. Chem. 1998, 63: 4808 -
14d
Weber L.Iaiza P.Biringer G.Barbier P. Synlett 1998, 1156 -
14e
Romoff TT.Ma L.Wang Y.Campbell DA. Synlett 1998, 1341 -
14f
Kulkarni BA.Ganesan A. Tetrahedron Lett. 1998, 39: 4369 -
14g
Fitch DM.Evans KA.Chai D.Duffy KJ. Org. Lett. 2005, 7: 5521 -
14h
Evans KA.Chai D.Graybill TL.Burton G.Sarisky RT.Lin-Goerke J.Johnston VK.Rivero RA. Bioorg. Med. Chem. Lett. 2006, 16: 2205 - 15 For a recent review on cyclative cleavage strategy, see:
Pernerstorfer J. In Combinatorial ChemistryBannwarth W.Hinzen B. Wiley-VCH; Weinheim: 2006. p.111-142 -
18a
Kafka S.Klkgek A.Polis J.Komrlj J. Heterocycles 2002, 57: 1659 -
18b
Stadlbauer W.Laschober R.Lutschounig H.Schindler G.Kappe T. Monatsh. Chem. 1992, 123: 617 -
18c
Bowman RE.Grey TF.Huckle D.Lockhart IM.Wright M. J. Chem. Soc. 1964, 3350 -
18d
Ziegler E.Kappe T. Monatsh. Chem. 1963, 94: 736
References and Notes
Another reason for selection of KHMDS as a standard base was the known favorable character of potassium enolates for O-alkylation, which is needed to obtain the 4-alkoxy derivatives in high purities through a subsequent in situ alkylation of the cleaved products. The study on the efficient alkylation is in progress using polymer-supported alkylating agents and will be reported elsewhere.
17
Representative Procedure for Preparation of Compounds 9
Preparation of 2-Benzylaminobenzoate Resin (7a; X = H, R
¹
= Ph)
To a mixture of the resin 1a (X = H; 4.00 g, theoretically 3.59 mmol), prepared from Wang resin (1.00 mmol/g), and benzaldehyde (1.14 g, 10.8 mmol) in DCE (60 mL) at r.t. was added NaBH(OAc)3 (2.28 g, 10.8 mmol). The mixture was stirred at r.t. for 12 h and the resin was filtered, washed several times with CH2Cl2, DMF, MeOH, H2O, and MeOH, and dried in a vacuum oven to give 7a (4.30 g, 99%): on-bead ATR-FTIR: 3365 (NH), 3025, 2922, 1680 (C=O), 1602, 1581, 1512, 1492, 1451, 1221, 1172, 1097, 822, 750, 697 cm-1.
Preparation of 2-{Benzyl[3-(4-methoxyphenyl)acet-yl]amino}benzoate Resin (8a; X = H, R
¹
= Ph, R
²
= 4-MeOC
6
H
4
)
To a mixture of the resin 7a (X = H, R1 = Ph; 1.00 g, theoretically 0.830 mmol) and 4-methoxyphenylacetic acid (413 mg, 2.49 mmol) in CH2Cl2 (30 mL) at r.t. was added pyridine (391 mg, 4.98 mmol) and phosphorus oxychloride (385 mg, 2.49 mmol). The mixture was stirred at r.t. for 2 h and the resin was filtered, washed several times with CH2Cl2, DMF, MeOH, H2O, and MeOH, and dried in a vacuum oven to give 8a (1.09 g, 97%): on-bead ATR-FTIR: 3026, 2921, 1719 (O-C=O), 1662 (N-C=O), 1605, 1510, 1492, 1448, 1380, 1243, 1176, 1078, 1025, 822, 755, 697 cm-1.
Preparation of 1-Benzyl-4-hydroxy-3-(4-methoxy-phenyl)-1
H
-quinolin-2-one (9a; X = H, R
¹
= Ph, R
²
= 4-MeOC
6
H
4
)
To a suspension of the resin 8a (X = H, R1 = Ph, R2 = 4-MeOC6H4; 100 mg, theoretically 0.0739 mmol) in THF (3 mL) at r.t. was added 0.5 M KHMDS in toluene (0.440 mL, 0.227 mmol) and the mixture was stirred at r.t. for 6 h. The mixture was filtered and washed with MeOH (about 10 mL). The filtrate was evaporated in vacuo, acidified to pH 4-5 with 3 N HCl, and extracted with EtOAc (2 × 3 mL). The organic layer was dried over MgSO4. The solvent was evaporated in vacuo and the residue (18 mg, 68%; 91% purity on the basis of LC-UV-MS spectrum) was purified by a silica gel column chromatography (n-hexane-EtOAc, 2:1) to afford 9a (14 mg, 53%; 99% purity on the basis of LC-UV-MS spectrum): 1H NMR (500 MHz, CDCl3): δ = 3.86 (s, 3 H), 5.56 (br s, 2 H), 7.05 (d, J = 8.7 Hz, 2 H), 7.20-7.23 (m, 2 H), 7.25-7.31 (m, 5 H), 7.43-7.47 (m, 3 H), 8.04 (dd, J = 8.0, 1.3 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 46.2, 55.4 111.2, 114.8, 115.0, 115.7, 121.9, 123.4, 124.1, 126.8, 127.2, 128.7, 131.1, 132.0, 137.0, 138.8, 156.0, 159.8, 162.8. ESI-MS: m/z = 358 [M + H]+.