RSS-Feed abonnieren
DOI: 10.1055/s-2007-980385
Silicon-Stereogenic Silanes in Asymmetric Catalysis
Publikationsverlauf
Publikationsdatum:
25. Juni 2007 (online)
Abstract
The exploitation of chirality at silicon in asymmetric catalysis is a challenging task. Silicon-stereogenic silanes were initially utilized to elucidate the stereochemical course of substitution at silicon. These mechanistic investigations are to be seen alongside a handful of synthetic transformations with covalently bound silicon as the stereoinducer. While in these substrate-controlled reactions the asymmetrically substituted silicon functions as a chiral auxiliary, reagent-controlled processes have remained elusive. This account summarizes the aimed design of silicon-stereogenic silanes and their introduction to stereoselective synthesis as chiral reagents.
-
1 Initial Reflections
-
2 Design of Silicon-Stereogenic Silanes
-
3 Preparation of Silicon-Stereogenic Silanes
-
4 Enantiospecific Reductive Metalation of Chlorosilanes
-
5 Enantiospecific σ-Bond Metathesis of Silanes with Transition-Metal Alkyls: Hydrosilylation of Prochiral Alkenes
-
6 Enantiospecific σ-Bond Metathesis of Silanes with Transition-Metal Alkoxides: Dehydrogenative Silicon-Oxygen Coupling of Chiral Alcohols
-
7 Final Thoughts
Key words
asymmetric catalysis - reductive metalations - hydrosilylations - kinetic resolution - silicon
- 1
Kipping FS. J. Chem. Soc. 1907, 91: 209 -
3a
Sommer LH.Frye CL. J. Am. Chem. Soc. 1959, 81: 1013 -
3b
Sommer LH.Frye CL.Parker GA.Michael KW. J. Am. Chem. Soc. 1964, 86: 3271 - 4
Sommer LH. Intra-Sci. Chem. Rep. 1973, 7: 1 - 5
Sommer LH. Stereochemistry Mechanism and Silicon McGraw-Hill; New York: 1965. -
6a
Corriu RJP.Guerin C.Moreau JJE. In Topics in Stereochemistry Vol. 15:Eliel EL. Wiley; New York: 1984. p.43-198 -
6b
Corriu RJP.Guerin C. Adv. Organomet. Chem. 1982, 20: 265 - 7
Sommer LH.Mason R. J. Am. Chem. Soc. 1965, 87: 1619 -
8a
Sommer LH.Lyons JE. J. Am. Chem. Soc. 1967, 89: 1521 -
8b
Sommer LH.Lyons JE. J. Am. Chem. Soc. 1969, 91: 7061 -
9a
Sommer LH.Michael KW.Fujimoto H. J. Am. Chem. Soc. 1967, 89: 1519 -
9b
Sommer LH.Lyons JE.Fujimoto H. J. Am. Chem. Soc. 1969, 91: 7051 - 10
Corriu RJP.Moreau JJE. J. Organomet. Chem. 1976, 114: 135 - 11
Maryanoff CA.Maryanoff BE. In Asymmetric Synthesis Vol. 4:Morrison JD.Scott JW. Academic; Orlando: 1984. p.355-374 -
12a
Fry JL.Adlington MG. J. Am. Chem. Soc. 1978, 100: 7641 -
12b
Hathaway SJ.Paquette LA. J. Org. Chem. 1983, 48: 3351 -
12c
Fry JL.McAdam MA. Tetrahedron Lett. 1984, 25: 5859 -
12d
Larson GL.Prieto JA.Ortiz E. Tetrahedron 1988, 44: 3781 -
12e
Jung ME.Hogan KT. Tetrahedron Lett. 1988, 29: 6199 -
12f
Stang PJ.Learned AE. J. Org. Chem. 1989, 54: 1779 -
13a
Brook AG.Duff JM.Anderson DG. J. Am. Chem. Soc. 1970, 92: 7567 -
13b
Daniels RG.Paquette LA. Organometallics 1982, 1: 1449 -
13c
Larson GL.Cruz de Maldonado V.Fuentes LM.Torres LE. J. Org. Chem. 1988, 53: 633 -
13d
Bonini BF.Mazzanti G.Zani P.Maccagnani G. J. Chem. Soc., Chem. Commun. 1988, 365 -
13e
Bonini BF.Maccagnani G.Masiero S.Mazzanti G.Zani P. Tetrahedron Lett. 1989, 30: 2677 -
13f
Bonini BF.Masiero S.Mazzanti G.Zani P. Tetrahedron Lett. 1991, 32: 6801 -
13g
Chapeaurouge A.Bienz S. Helv. Chim. Acta 1993, 76: 1876 -
13h
Trzoss M.Shao J.Bienz S. Tetrahedron 2002, 58: 5885 -
13i
Coelho PJ.Blanco L. Tetrahedron 2003, 59: 2451 - 14
Bienz S. Chimia 1997, 51: 131 -
15a
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: Wiley; New York: 1999. p.113-148 -
15b
Kocieński PJ. Protecting Groups 3rd ed.: Thieme; Stuttgart: 2004. p.188-230 - 16
Hayashi T. In Comprehensive Asymmetric Catalysis Vol. 1:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Heidelberg: 1999. p.319-333 - 17
Brook MA. Silicon in Organic, Organometallic, and Polymer Chemistry Wiley; New York: 2000. p.29-31 - 18
Oestreich M. Chem. Eur. J. 2006, 12: 30 - 19
Oestreich M.Schmid UK.Auer G.Keller M. Synthesis 2003, 2725 - 20
Oestreich M.Auer G.Keller M. Eur. J. Org. Chem. 2005, 184 - 21
Rendler S.Auer G.Keller M.Oestreich M. Adv. Synth. Catal. 2006, 348: 1171 - 22
Schmidt DR.O’Malley SJ.Leighton JL. J. Am. Chem. Soc. 2003, 125: 1190 - 23
Ottosson H.Steel PG. Chem. Eur. J. 2006, 12: 1576 - 24
Corey JY. In Advances in Silicon Chemistry Vol. 1:Larson G. JAI; Greenwich: 1991. p.327-387 - 25
Corriu RJP.Moreau JJE. J. Organomet. Chem. 1976, 120: 337 -
26a
Corriu RJP.Moreau JJE. J. Organomet. Chem. 1974, 64: C51 -
26b
Hayashi T.Yamamoto K.Kumada M. Tetrahedron Lett. 1974, 331 -
26c
Ohta T.Ito M.Tsuneto A.Takaya H. J. Chem. Soc., Chem. Commun. 1994, 2525 -
27a
Gilman H.Marrs OL. J. Org. Chem. 1964, 29: 3175 -
27b
Gilman H.Marrs OL. J. Org. Chem. 1965, 30: 325 -
28a
Tamao K.Kawachi A. Adv. Organomet. Chem. 1995, 38: 1 -
28b
Lambert JB.Schulz WJ. In The Chemistry of Organic Silicon CompoundsPatai S.Rappoport Z. Wiley; Chichester: 1989. Part 2. p.1007-1014 -
28c
Belzner J.Dehnert U. In The Chemistry of Organic Silicon CompoundsRappoport Z.Apeloig Y. Wiley; Chichester: 1998. Part 1. p.779-825 -
29a
Fleming I. In Organocopper ReagentsTaylor RJK. Oxford Academic Press; New York: 1994. p.257-292 -
29b
Dieter RK. In Modern Organocopper ChemistryKrause N. Wiley-VCH; Weinheim: 2002. p.79-144 -
30a
Gilman H.Lichtenwalter GD. J. Am. Chem. Soc. 1958, 80: 608 -
30b
Tamao K.Kawachi A.Ito Y. J. Am. Chem. Soc. 1992, 114: 3989 -
30c
Tamao K.Kawachi A. Angew. Chem. Int. Ed. Engl. 1995, 34: 818 ; Angew. Chem. 1995, 107, 886 - 31
Jones GR.Landais Y. Tetrahedron 1996, 52: 7599 -
32a
Oppolzer W.Mills RJ.Pachinger W.Stevenson T. Helv. Chim. Acta 1986, 69: 1542 -
32b
Fleming I.Kindon ND. J. Chem. Soc., Chem. Commun. 1987, 1177 -
32c
Palomo C.Aizpurua JM.Iturburu M.Urchegui R. J. Org. Chem. 1994, 59: 240 -
32d
Hale MR.Hoveyda AH. J. Org. Chem. 1994, 59: 4370 -
32e
Fleming I.Kindon N. J. Chem. Soc., Perkin Trans. 1 1995, 303 -
33a
Hayashi T.Matsumoto Y.Ito Y. J. Am. Chem. Soc. 1988, 110: 5579 -
33b
Matsumoto Y.Hayashi T.Ito Y. Tetrahedron 1994, 50: 335 - 34
Walter C.Auer G.Oestreich M. Angew. Chem. Int. Ed. 2006, 45: 5675 ; Angew. Chem. 2006, 118, 5803 -
36a
Chatgilialoglu C. Chem. Rev. 1995, 95: 1229 -
36b
Chatgilialoglu C. Organosilanes in Radical Chemistry Wiley; New York: 2004. - 37
Omote M.Tokita T.Shimizu Y.Imae I.Shirakawa E.Kawakami Y. J. Organomet. Chem. 2000, 611: 20 - 38
Strohmann C.Hörnig J.Auer D. Chem. Commun. (Cambridge) 2002, 766 -
39a
We concluded from these experiments that transmetala-tion from lithium to zinc would also yield configurationally stable metalated silanes. It was because of this that we initiated a project directed towards the use of bis(triorgano-silyl)zincs in conjugate silyl transfer reactions. In fact, we developed novel copper-catalyzed [39b] and copper-free [39c] reaction protocols for the conjugate addition of zincated silanes.
-
39b
Oestreich M.Weiner B. Synlett 2004, 2139 -
39c
Auer G.Weiner B.Oestreich M. Synthesis 2006, 2113 -
40a
Fleming I.Roberts RS.Smith SC. J. Chem. Soc., Perkin Trans. 1 1998, 1209 -
40b
Rahman NA.Fleming I.Zwicky AB. J. Chem. Res., Synop. 1992, 292 -
40c
George MV.Peterson DJ.Gilman H. J. Am. Chem. Soc. 1960, 82: 403 -
42a
We also considered the related reductive cleavage of silicon-bromine and silicon-sulfur bonds. The latter was particularly attractive as thiolates would have been dummy ligands in subsequent cuprate chemistry. [42b] [c] These approaches failed because of the poor chemical stability and resultant racemization of these compounds.
-
42b
Posner GH.Whitten CE.Sterling JJ. J. Am. Chem. Soc. 1973, 95: 7788 -
42c
Posner GH.Brunelle DJ.Sinoway L. Synthesis 1974, 662 -
43a
Seitz DE.Ferreira L. Synth. Commun. 1979, 9: 451 -
43b
Boudjouk P.Han BH. Tetrahedron Lett. 1981, 22: 3813 -
43c
Lickiss PD.Lucas R. J. Organomet. Chem. 1993, 444: 25 - 45
Bassindale AR.Glynn SJ.Taylor PG. In The Chemistry of Organic Silicon Compounds Part 1, Vol. 2:Rappoport Z.Apeloig Y. Wiley; Chichester: 1998. p.495-511 - 46
Couzijn EPA.Schakel M.de Kanter FJJ.Ehlers AW.Lutz M.Spek AL.Lammertsma K. Angew. Chem. Int. Ed. 2004, 43: 3440 ; Angew. Chem. 2004, 116, 3522 - 47
Yakimansky AV.Müller AHE.Van Beylen M. Macromolecules 2000, 33: 5686 -
48a
While we were performing these studies, Kawakami et al. described the synthesis of a disilane (50% ee) by nucleo-philic chloride displacement at a highly enantioenriched chlorosilane (99% ee) using a lithiosilane (82% ee), both derived from (Si S)-1. [48b] This reaction seems to proceed with predominant retention at the former lithium-bearing silicon atom and with inversion at the former electrophilic silicon atom. This transformation reflects our situation, that is a formal dimerization, and therefore confirms our findings.
-
48b
Oh H.-S.Imae I.Kawakami Y.Raj SSS.Yamane T. J. Organomet. Chem. 2003, 685: 35 - 50
Strohmann C.Schildbach D.Auer D. J. Am. Chem. Soc. 2005, 127: 7968 - 51
Eaborn C.Tune DJ.Walton DRM. J. Chem. Soc., Dalton Trans. 1973, 2255 - 52
Rendler S. Diploma Thesis Albert-Ludwigs-Universität Freiburg; Germany: 2004. - 53
Oestreich M.Rendler S. Angew. Chem. Int. Ed. 2005, 44: 1661 ; Angew. Chem. 2005, 117, 1688 - 54
Ojima I.Li Z.Zhu J. In The Chemistry of Organic Silicon Compounds Vol. 2:Rappoport Z.Apeloig Y. Wiley; New York: 1998. p.1687-1792 - 55
Harrod JF.Chalk AJ. In Organic Synthesis via Metal Carbonyls Vol. 2:Wender I.Pino P. Wiley; New York: 1997. p.673-704 - 56
Yamamoto K.Hayashi T.Kumada M. J. Am. Chem. Soc. 1971, 93: 5301 - 57
LaPointe AM.Rix FC.Brookhart M. J. Am. Chem. Soc. 1997, 119: 906 - 58
Perch NS.Widenhoefer RA. J. Am. Chem. Soc. 2004, 126: 6332 - 59
Rendler S.Oestreich M.Butts CP.Lloyd-Jones GC. J. Am. Chem. Soc. 2007, 129: 502 -
60a
Girard C.Kagan HB. Angew. Chem. Int. Ed. 1998, 37: 2923 ; Angew. Chem. 1998, 110, 3088 -
60b
Kagan HB. Synlett 2001, 888 - 61
Rendler S.Oestreich M. Beilst. J. Org. Chem. 2007, 3: 9 - 62
Jankowski P.Schaumann E.Wicha J.Zarecki A.Adiwidjaja G. Tetrahedron: Asymmetry 1999, 10: 519 - 63
Kagan HB.Fiaud JC. In Topics in Stereochemistry Vol. 18:Eliel EL.Wilen SH. Wiley; New York: 1988. p.249-330 -
64a
Vedejs E.Jure M. Angew. Chem. Int. Ed. 2005, 44: 3974 ; Angew. Chem. 2005, 117, 4040 -
64b
Robinson DEJE.Bull SD. Tetrahedron: Asymmetry 2003, 14: 1407 -
64c
Keith JM.Larrow JF.Jacobsen EN. Adv. Synth. Catal. 2001, 343: 5 - 65
Somfai P. Angew. Chem. Int. Ed. Engl. 1997, 36: 2731 ; Angew. Chem. 1997, 109, 2849 - 66
Rendler S.Auer G.Oestreich M. Angew. Chem. Int. Ed. 2005, 44: 7620 ; Angew. Chem. 2005, 117, 7793 - 67
Isobe T.Fukuda K.Araki Y.Ishikawa T. Chem. Commun. (Cambridge) 2001, 243 - 68
Zhao Y.Rodrigo J.Hoveyda AH.Snapper ML. Nature 2006, 443: 67 - 69
Lorenz C.Schubert U. Chem. Ber. 1995, 128: 1267 - 70
Rendler S.Oestreich M. Angew. Chem. Int. Ed. 2007, 46: 498 ; Angew. Chem. 2007, 119, 504 - 71
Brestensky DM.Huseland DE.McGettigan C.Stryker JM. Tetrahedron Lett. 1988, 29: 3749 - 72
Appella DH.Moritani Y.Shintani R.Ferreira EM.Buchwald SL. J. Am. Chem. Soc. 1999, 121: 9473 - 73
Luukas TO.Girard C.Fenwick DR.Kagan HB. J. Am. Chem. Soc. 1999, 121: 9299 - 75
Rendler S. Projected Ph.D. Dissertation Westfälische Wilhelms-Universität Münster; Germany: 2007. - 76
Plefka O. Diploma Thesis Albert-Ludwigs-Universität Freiburg; Germany: 2006. - 77
Klare HFT. Diploma Thesis Westfälische Wilhelms-Universität Münster; Germany: 2007.
References and Notes
Definition of acyclic and cyclic silanes: the silane is acyclic when the silicon atom is not and cyclic when the silicon atom is embedded in a ring skeleton. These terms do not concern the substituents at the silicon atom.
35The expression chirality transfer from silicon to carbon has been used inconsistently to classify several categorically different stereochemical scenarios of intermolecular processes: substrate and reagent control. In these substrate-controlled transformations, the stereogenic silicon is covalently bound to the substrate functioning as a chiral auxiliary while the asymmetrically substituted silicon remains untouched. Conversely, a covalent bond is cleaved and formed at the chiral silicon center in reagent-controlled reactions involving functionalized silanes with silicon-centered chirality and prochiral substrates. Any induced stereoselectivity in the carbon skeleton of the reaction product originates from the chirality in the silicon reagent. This scenario represents the silicon-to-carbon chirality transfer. This concept is extended to intramolecular processes, which are assigned to substrate-controlled reactions by definition. Chirality transfer from silicon to carbon is nevertheless realized when the distinct criteria of intermolecular, reagent-controlled transformations apply to the intramolecular scenario: cleavage and formation of a covalent bond at the stereogenic silicon and silicon as the sole source of stereochemical information.
41It should be noted that Kawakami et al. had described the reductive metalation of an acyclic enantioenriched chlorosilane. [37] The asymmetrically substituted silicon suffered complete racemization during metalation providing the lithiosilane in racemic form.
44LiN = lithium naphthalide, LiDBB = lithium 4,4′-di-tert-butylbiphenylide, LDMAN = lithium 1-(dimethylamino)naphthalide.
49This agrees with literature data. Careful investigations by Fleming et al. [40a] [b] indicate that formation and cleavage of disilanes in the reductive metalation of ArMe2SiCl (Ar = phenyl, 2-tolyl, and 4-tolyl) are sensitive to the presence of substituents at the aryl group. In a single case, the anion is directly generated from the chlorosilane.
74Rendler, S; Auer, G.; Oestreich, M. unpublished results