Synlett 2007(10): 1569-1572  
DOI: 10.1055/s-2007-982551
LETTER
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Methanolysis of Cyclic meso-Anhydrides with Tripodal 2,6-trans-1,2,6-Trisubstituted Piperidine as Chiral Amine Catalyst

Tohru Okamatsu, Ryo Irie*, Tsutomu Katsuki
Department of Chemistry, Faculty of Science, Graduate School, Kyushu University 33, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Fax: +81(92)6422607; e-Mail: irie.scc@mbox.nc.kyushu-u.ac.jp;
Further Information

Publication History

Received 5 March 2007
Publication Date:
06 June 2007 (online)

Abstract

An optically active tripodal amine, (2S,6S)-2,6-bis(o-hydroxyphenyl)-1-(2-pyridylmethyl)piperidine, was proven to be a potent chiral catalyst (1-5 mol%) for methanolytic asymmetric desymmetrization of cyclic meso-anhydrides to hemiesters. A good level of enantioselectivities (up to 81% ee) was achieved for various substrates, some of which were reported to be poor substrates for methanolysis using known chiral amines as catalysts.

    References and Notes

  • 2a Dalco PI. Moisan L. Angew. Chem. Int. Ed.  2001,  40:  3726 
  • 2b Jarvo ER. Miller SJ. Tetrahedron  2002,  58:  2481 
  • 2c Dalco PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 2d Berkessel A. Grögger H. Asymmetric Organocatalysis   Wiley-VCH; Weinheim: 2005. 
  • 2e France S. Guerin DJ. Miller SJ. Lectka T. Chem. Rev.  2003,  103:  2985 
  • 3 Chen Y. McDaid P. Deng L. Chem. Rev.  2003,  103:  2965 
  • 4a Hiratake J. Yamamoto Y. Oda J. J. Chem. Soc., Chem. Commun.  1985,  1717 
  • 4b Hiratake J. Inagaki M. Yamamoto Y. Oda J. J. Chem. Soc., Perkin Trans. 1  1987,  1053 
  • 4c Aitken RA. Gopal J. Hirst JA. J. Chem. Soc., Chem. Commun.  1988,  632 
  • 4d Bolm C. Gerlach A. Dinter CL. Synlett  1999,  195 
  • 4e Bolm C. Schiffers I. Dinter CL. Gerlach A. J. Org. Chem.  2000,  65:  6984 
  • 4f Chen Y. Tian S.-K. Deng L. J. Am. Chem. Soc.  2000,  122:  9542 
  • 4g Bolm C. Schiffers I. Atodiresei I. Hackenberger CPR. Tetrahedron: Asymmetry  2003,  14:  3455 
  • 4h Rodriguez B. Rantanen T. Bolm C. Angew. Chem. Int. Ed.  2006,  45:  6924 
  • 6 Uozumi Y. Yasoshima K. Miyachi T. Nagai S.-I. Tetrahedron Lett.  2001,  42:  411 
  • 7 Honjo T. Sano S. Shiro M. Nagao Y. Angew. Chem. Int. Ed.  2005,  44:  5838 
  • Various transition-metal-catalyzed asymmetric ring-opening reactions of cyclic meso-anhydrides were also reported:
  • 8a Seebach D. Jaeschke G. Wang YM. Angew. Chem., Int. Ed. Engl.  1995,  34:  2395 
  • 8b Shintani R. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  1057 
  • 8c Bercot EA. Rovis T. J. Am. Chem. Soc.  2002,  124:  174 
  • 8d Bercot EA. Rovis T. J. Am. Chem. Soc.  2004,  126:  10248 
  • For the related asymmetric desymmetrization of cyclic meso-anhydrides with stoichiometric chiral alcohols and amines, see:
  • 8e Ohshima M. Mukaiyama T. Chem. Lett.  1987,  377 
  • 8f Ohtani M. Matsuura T. Watanabe F. Narisada M. J. Org. Chem.  1991,  56:  4120 
  • 8g Theisen PD. Heathcock CH. J. Org. Chem.  1993,  58:  142 
  • 8h Hashimoto N. Kawamura S. Ishizuka T. Kunieda T. Tetrahedron Lett.  1996,  37:  9237 
  • 8i Jones IG. Jones W. North M. Teijeira M. Uriarte E. Tetrahedron Lett.  1997,  38:  889 
  • 8j Hibbs DE. Hursthouse MB. Jones IG. Jones W. Malic KMA. North M. J. Org. Chem.  1999,  64:  5413 
  • 8k Evans AC. Longbottom DA. Matsuoka M. Ley SV. Synlett  2005,  646 
  • 9 Okamatsu T. Irie R. Katsuki T. J. Organomet. Chem.  2007,  692:  645 
  • For the representative related studies on the helical chirality induced by tripodal tertiary amine ligands, see:
  • 10a Canary JW. Allen CS. Castagnetto JM. Wang Y. J. Am. Chem. Soc.  1995,  117:  8484 
  • 10b Dai Z. Xu X. Canary JW. Chirality  2005,  17:  S227 
  • 11 The identical architecture was also reported for achiral N,N-bis(2-hydroxybenzyl)-2-picolylamine: Vencato I. Neves A. Ceccato AS. Horn A. Acta Crystallogr., Sect. C  1996,  52:  949 
  • 12a Marcelli T. van Maarseveen JH. Hiemstra H. Angew. Chem. Int. Ed.  2006,  45:  7496 
  • 12b Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal.  2006,  348:  999 
  • 16 Mori K. Tomioka H. Fukuyo E. Yanagi K. Liebigs Ann. Chem.  1993,  671 
  • 17 Bigi F. Carloni S. Maggi R. Mazzacani A. Sartori G. Tanzi G. J. Mol. Catal. A: Chem.  2002,  182-183:  533 
1

Current address: Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan. E-mail: irie@sci.kumamoto-u.ac.jp

5

Bolm et al. also devised a catalytic system with a stoichiometric amount of sacrificial achiral amine.4e

13

Although we used the (R,R)-isomer of 1 in our previous report (ref. 8), this work was performed with (S,S)-1.

14

Typical Procedure for Catalytic Asymmetric Methanolysis of Cyclic meso-Anhydrides: To a solution or suspension of cyclic meso-anhydride (0.1 mmol) and 1 (1.8 mg, 5 µmol) in dist. toluene (1-2.5 mL) was added MeOH (20-81 µL, 0.5-2.0 mmol) at the temperature specified in Table 1 and Table 2. After being stirred at the temperature for 24 h, an aliquot of the reaction mixture was concentrated and subjected to 1H NMR analysis. The chemical yield was estimated from the ratio of the unreacted anhydride and the hemiester produced, which were the only two components in the crude reaction mixture. Then, whole the mixture was acidified with aq HCl (1 M, 1.0 mL) to extract 1 into the aqueous phase. The phases were separated and the product in the organic layer was extracted with sat. NaHCO3 (2 × 1.0 mL), leaving the starting material in the organic layer. After the organic layer was discarded, the aqueous layer was acidified with aq HCl (1 M, 2.0 mL) and extracted with EtOAc (3 × 2.0 mL). The combined organic layer was dried over Na2SO4 and concentrated in vacuo to give the desired hemiester in almost pure form judged by the 1H NMR analysis.

15

The conditions for the HPLC analysis of each compound are as follows: 3a: DAICEL CHIRALCELL AS-H, hexane-2-propanol-CF3COOH = 95:5:0.1, 0.3 mL/min. Carboxanilide of 3b: DAICEL CHIRALCELL AD-H, hexane-2-pro-
panol = 90:10, 0.5 mL/min. Carboxanilide of 3c: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 90:10, 0.5 mL/min. p-Bromophenyl ester of 3d: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 98:2, 0.5 mL/min. p-Bromo-phenyl ester of 3e: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 98:2, 0.5 mL/min. Carboxanilide of 3f: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 92:8, 0.5 mL/min. 3g: DAICEL CHIRALCELL AD-H, hexane-2-propanol-CF3COOH = 90:10:0.1, 0.5 mL/min. Carboxanilide of 3h: DAICEL CHIRALCELL AS-H, hexane-2-propanol = 70:30, 0.5 mL/min. Carboxanilide of 3i: DAICEL CHIRALCELL OJ-H, hexane-2-propanol = 90:10, 0.5 mL/min.

18

The authors are grateful to a reviewer for useful suggestions about the mechanism of this reaction that is now under investigation in our laboratory.