Abstract
An optically active tripodal amine, (2S,6S)-2,6-bis(o-hydroxyphenyl)-1-(2-pyridylmethyl)piperidine, was proven to be a potent chiral catalyst (1-5 mol%) for methanolytic asymmetric desymmetrization of cyclic meso-anhydrides to hemiesters. A good level of enantioselectivities (up to 81% ee) was achieved for various substrates, some of which were reported to be poor substrates for methanolysis using known chiral amines as catalysts.
Key words
chiral amine catalyst - cyclic meso-anhydrides - asymmetric desymmetrization - methanolysis - organocatalysis
References and Notes
1 Current address: Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan. E-mail: irie@sci.kumamoto-u.ac.jp
2a
Dalco PI.
Moisan L.
Angew. Chem. Int. Ed.
2001,
40:
3726
2b
Jarvo ER.
Miller SJ.
Tetrahedron
2002,
58:
2481
2c
Dalco PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
2d
Berkessel A.
Grögger H.
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim:
2005.
2e
France S.
Guerin DJ.
Miller SJ.
Lectka T.
Chem. Rev.
2003,
103:
2985
3
Chen Y.
McDaid P.
Deng L.
Chem. Rev.
2003,
103:
2965
4a
Hiratake J.
Yamamoto Y.
Oda J.
J. Chem. Soc., Chem. Commun.
1985,
1717
4b
Hiratake J.
Inagaki M.
Yamamoto Y.
Oda J.
J. Chem. Soc., Perkin Trans. 1
1987,
1053
4c
Aitken RA.
Gopal J.
Hirst JA.
J. Chem. Soc., Chem. Commun.
1988,
632
4d
Bolm C.
Gerlach A.
Dinter CL.
Synlett
1999,
195
4e
Bolm C.
Schiffers I.
Dinter CL.
Gerlach A.
J. Org. Chem.
2000,
65:
6984
4f
Chen Y.
Tian S.-K.
Deng L.
J. Am. Chem. Soc.
2000,
122:
9542
4g
Bolm C.
Schiffers I.
Atodiresei I.
Hackenberger CPR.
Tetrahedron: Asymmetry
2003,
14:
3455
4h
Rodriguez B.
Rantanen T.
Bolm C.
Angew. Chem. Int. Ed.
2006,
45:
6924
5 Bolm et al. also devised a catalytic system with a stoichiometric amount of sacrificial achiral amine.4e
6
Uozumi Y.
Yasoshima K.
Miyachi T.
Nagai S.-I.
Tetrahedron Lett.
2001,
42:
411
7
Honjo T.
Sano S.
Shiro M.
Nagao Y.
Angew. Chem. Int. Ed.
2005,
44:
5838
Various transition-metal-catalyzed asymmetric ring-opening reactions of cyclic meso-anhydrides were also reported:
8a
Seebach D.
Jaeschke G.
Wang YM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2395
8b
Shintani R.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
1057
8c
Bercot EA.
Rovis T.
J. Am. Chem. Soc.
2002,
124:
174
8d
Bercot EA.
Rovis T.
J. Am. Chem. Soc.
2004,
126:
10248
For the related asymmetric desymmetrization of cyclic meso-anhydrides with stoichiometric chiral alcohols and amines, see:
8e
Ohshima M.
Mukaiyama T.
Chem. Lett.
1987,
377
8f
Ohtani M.
Matsuura T.
Watanabe F.
Narisada M.
J. Org. Chem.
1991,
56:
4120
8g
Theisen PD.
Heathcock CH.
J. Org. Chem.
1993,
58:
142
8h
Hashimoto N.
Kawamura S.
Ishizuka T.
Kunieda T.
Tetrahedron Lett.
1996,
37:
9237
8i
Jones IG.
Jones W.
North M.
Teijeira M.
Uriarte E.
Tetrahedron Lett.
1997,
38:
889
8j
Hibbs DE.
Hursthouse MB.
Jones IG.
Jones W.
Malic KMA.
North M.
J. Org. Chem.
1999,
64:
5413
8k
Evans AC.
Longbottom DA.
Matsuoka M.
Ley SV.
Synlett
2005,
646
9
Okamatsu T.
Irie R.
Katsuki T.
J. Organomet. Chem.
2007,
692:
645
For the representative related studies on the helical chirality induced by tripodal tertiary amine ligands, see:
10a
Canary JW.
Allen CS.
Castagnetto JM.
Wang Y.
J. Am. Chem. Soc.
1995,
117:
8484
10b
Dai Z.
Xu X.
Canary JW.
Chirality
2005,
17:
S227
11 The identical architecture was also reported for achiral N,N-bis(2-hydroxybenzyl)-2-picolylamine: Vencato I.
Neves A.
Ceccato AS.
Horn A.
Acta Crystallogr., Sect. C
1996,
52:
949
12a
Marcelli T.
van Maarseveen JH.
Hiemstra H.
Angew. Chem. Int. Ed.
2006,
45:
7496
12b
Akiyama T.
Itoh J.
Fuchibe K.
Adv. Synth. Catal.
2006,
348:
999
13 Although we used the (R,R)-isomer of 1 in our previous report (ref. 8), this work was performed with (S,S)-1.
14 Typical Procedure for Catalytic Asymmetric Methanolysis of Cyclic meso-Anhydrides: To a solution or suspension of cyclic meso-anhydride (0.1 mmol) and 1 (1.8 mg, 5 µmol) in dist. toluene (1-2.5 mL) was added MeOH (20-81 µL, 0.5-2.0 mmol) at the temperature specified in Table 1 and Table 2. After being stirred at the temperature for 24 h, an aliquot of the reaction mixture was concentrated and subjected to 1H NMR analysis. The chemical yield was estimated from the ratio of the unreacted anhydride and the hemiester produced, which were the only two components in the crude reaction mixture. Then, whole the mixture was acidified with aq HCl (1 M, 1.0 mL) to extract 1 into the aqueous phase. The phases were separated and the product in the organic layer was extracted with sat. NaHCO3 (2 × 1.0 mL), leaving the starting material in the organic layer. After the organic layer was discarded, the aqueous layer was acidified with aq HCl (1 M, 2.0 mL) and extracted with EtOAc (3 × 2.0 mL). The combined organic layer was dried over Na2SO4 and concentrated in vacuo to give the desired hemiester in almost pure form judged by the 1H NMR analysis.
15 The conditions for the HPLC analysis of each compound are as follows: 3a: DAICEL CHIRALCELL AS-H, hexane-2-propanol-CF3COOH = 95:5:0.1, 0.3 mL/min. Carboxanilide of 3b: DAICEL CHIRALCELL AD-H, hexane-2-pro-
panol = 90:10, 0.5 mL/min. Carboxanilide of 3c: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 90:10, 0.5 mL/min. p-Bromophenyl ester of 3d: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 98:2, 0.5 mL/min. p-Bromo-phenyl ester of 3e: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 98:2, 0.5 mL/min. Carboxanilide of 3f: DAICEL CHIRALCELL OD-H, hexane-2-propanol = 92:8, 0.5 mL/min. 3g: DAICEL CHIRALCELL AD-H, hexane-2-propanol-CF3COOH = 90:10:0.1, 0.5 mL/min. Carboxanilide of 3h: DAICEL CHIRALCELL AS-H, hexane-2-propanol = 70:30, 0.5 mL/min. Carboxanilide of 3i: DAICEL CHIRALCELL OJ-H, hexane-2-propanol = 90:10, 0.5 mL/min.
16
Mori K.
Tomioka H.
Fukuyo E.
Yanagi K.
Liebigs Ann. Chem.
1993,
671
17
Bigi F.
Carloni S.
Maggi R.
Mazzacani A.
Sartori G.
Tanzi G.
J. Mol. Catal. A: Chem.
2002,
182-183:
533
18 The authors are grateful to a reviewer for useful suggestions about the mechanism of this reaction that is now under investigation in our laboratory.