References and Notes
For selected recent reviews on gold catalysis, see:
1a
Hoffmann-Röder A.
Krause N.
Org. Biomol. Chem.
2005,
3:
387
1b
Hashmi ASK.
Angew. Chem. Int. Ed.
2005,
44:
6990
1c
Hashmi ASK.
Hutchings GJ.
Angew. Chem. Int. Ed.
2006,
45:
7896
1d
Jiménez-Núñez E.
Echavarren AM.
Chem. Commun.
2007,
333
1e For a recent review of gold-catalyzed hydroamination, see: Widenhoefer RA.
Han X.
Eur. J. Org. Chem.
2006,
4555
For examples of gold-catalyzed hydroamination of alkynes, see:
2a
Fukuda Y.
Utimoto K.
Nozaki H.
Heterocycles
1987,
25:
297
2b
Fukuda Y.
Utimoto K.
Synthesis
1991,
975
2c
Müller TE.
Grosche M.
Herdtweck E.
Pleier A.-K.
Walter E.
Yan Y.-K.
Organometallics
2000,
19:
170
2d
Arcadi A.
Giuseppe SD.
Marinelli F.
Rossi E.
Adv. Synth. Catal.
2001,
343:
443
2e
Arcadi A.
Giuseppe SD.
Marinelli F.
Rossi E.
Tetrahedron: Asymmetry
2001,
12:
2715
2f
Mizushima E.
Hayashi T.
Tanaka M.
Org. Lett.
2003,
5:
3349
2g
Luo Y.
Li Z.
Li C.-J.
Org. Lett.
2005,
7:
2675
2h
Zhou C.-Y.
Chan PWH.
Che C.-M.
Org. Lett.
2006,
8:
325
2i
Kadzimirsz D.
Hildebrandt D.
Merz K.
Dyker G.
Chem. Commun.
2006,
661
2j
Kang J.-E.
Kim H.-B.
Lee J.-W.
Shin S.
Org. Lett.
2006,
8:
3537
2k
Hashmi ASK.
Rudolph M.
Schymura S.
Visus J.
Frey W.
Eur. J. Org. Chem.
2006,
4905
2l
Zhang Y.
Donahue JP.
Li C.-J.
Org. Lett.
2007,
9:
627
For examples of gold-catalyzed hydroamination of allenes, see:
3a
Krause N.
Morita N.
Org. Lett.
2004,
6:
4121
3b
Nishina N.
Yamamoto Y.
Angew. Chem. Int. Ed.
2006,
45:
3314
3c
Patil NT.
Lutete LM.
Nishina N.
Yamamoto Y.
Tetrahedron Lett.
2006,
47:
4749
3d
Zhang Z.
Liu C.
Kinder RE.
Han X.
Qian H.
Widenhoefer RA.
J. Am. Chem. Soc.
2006,
128:
9066
3e
Morita N.
Krause N.
Eur. J. Org. Chem.
2006,
4634
3f
LaLonde RL.
Sherry BD.
Kang EJ.
Toste FD.
J. Am. Chem. Soc.
2007,
129:
2452
For examples of gold-catalyzed hydroamination of alkenes, see:
4a
Zhang J.
Yang C.-G.
He C.
J. Am. Chem. Soc.
2006,
128:
1798
4b
Brouwer C.
He C.
Angew. Chem. Int. Ed.
2006,
45:
1744
4c
Han X.
Widenhoefer RA.
Angew. Chem. Int. Ed.
2006,
45:
1747
4d
Liu X.-Y.
Li C.-H.
Che C.-M.
Org. Lett.
2006,
8:
2707
4e
Shi M.
Liu L.-P.
Tang J.
Org. Lett.
2006,
8:
4043
4f
Bender CF.
Widenhoefer RA.
Chem. Commun.
2006,
4143
4g
Bender CF.
Widenhoefer RA.
Org. Lett.
2006,
8:
5303
For examples of cationic gold(I)-catalyzed addition of carbon nucleophiles, see:
5a
Kennedy-Smith JJ.
Staben ST.
Toste FD.
J. Am. Chem. Soc.
2004,
126:
4526
5b
Staben ST.
Kennedy-Smith JJ.
Toste FD.
Angew. Chem. Int. Ed.
2004,
43:
5350
5c
Mézailles N.
Ricard L.
Gagosz F.
Org. Lett.
2005,
7:
4133
5d
Ochida A.
Ito H.
Sawamura M.
J. Am. Chem. Soc.
2006,
128:
16486
5e
Wei C.
Li C.-J.
J. Am. Chem. Soc.
2003,
125:
9584
5f
Yao X.
Li C.-J.
Org. Lett.
2006,
8:
1953
For some recent reviews of enyne cyclization, see:
5g
Ma S.
Yu S.
Gu Z.
Angew. Chem. Int. Ed.
2006,
45:
200
5h
Nieto-Oberhuber C.
López S.
Jiménez-Núñez E.
Echavarren AM.
Chem. Eur. J.
2006,
12:
5917
5i
Zhang L.
Sun J.
Kozmin SA.
Adv. Synth. Catal.
2006,
348:
2271
For examples of cationic gold(I)-catalyzed addition of oxygen nucleophiles, see:
6a
Teles JH.
Brode S.
Chabanas M.
Angew. Chem. Int. Ed.
1998,
37:
1415
6b
Mizushima E.
Sato K.
Hayashi T.
Tanaka M.
Angew. Chem. Int. Ed.
2002,
41:
4563
6c
Liu Y.
Song F.
Song Z.
Liu M.
Yan B.
Org. Lett.
2005,
7:
5409
6d
Yang C.-G.
He C.
J. Am. Chem. Soc.
2005,
127:
6966
6e
Belting V.
Krause N.
Org. Lett.
2006,
8:
4489
6f
Liu B.
Brabander KD.
Org. Lett.
2006,
8:
4907
6g
Zhang Z.
Widenhoefer RA.
Angew. Chem. Int. Ed.
2007,
46:
283
7 For an example of cationic gold(I)-catalyzed addition of nitrogen nucleophiles, see: Gorin DJ.
Davis NR.
Toste FD.
J. Am. Chem. Soc.
2005,
127:
11260
8 We examined the following complexes, but all attempts resulted in failure: AuCl, AuCl3, AuBr3, AuI, Au(CO)Cl, NaAuCl4·2H2O. It is known that the hydroamination of olefins with tosylamides is accelerated by TfOH,
[9]
so we examined the TfOH-catalyzed (10 mol%) hydroamination of 1a with 2 in toluene at 80 °C. However, the desired product (allylic amine) was not obtained at all. The allene 1a was decomposed gradually in the presence of TfOH at 80 °C, and only 30% of 1a was recovered after 12 h. It is clear that the present hydroamination is catalyzed by the gold complexes.
9a
Wabnitz TC.
Spencer JB.
Org. Lett.
2003,
5:
2141
9b
Li Z.
Zhang J.
Brouwer C.
Yang C.-G.
Reich NW.
He C.
Org. Lett.
2006,
8:
4175
9c
Rosenfeld DC.
Shekhar S.
Takeymiya A.
Utsunomiya M.
Hartwig JF.
Org. Lett.
2006,
8:
4179
9d
Lapis AAM.
Neto BAD.
Scholten JD.
Nachtigall FM.
Eberlin MN.
Dupont J.
Tetrahedron Lett.
2006,
47:
6775
10 In order to know whether the cationic gold species really participate in the present hydroamination or not, we prepared the cationic gold species [(MeCN)AuPPh2(o-tolyl)]+
-OTf according to the Echavarren’s method and used it for the hydroamination of 1a. The product 3a was obtained in 71% yield, indicating that the cationic gold complex was a catalytic species. See: Nieto-Oberhuber C.
López S.
Muñoz MP.
Cárdenas DJ.
Buñuel E.
Nevado C.
Echavarren AM.
Angew. Chem. Int. Ed.
2005,
44:
6146
11 It is reported that manipulation of phosphine ligands enhances the chemical yield in Pd-catalyzed amination of aryl halides. See: Chen G.
Lam WH.
Fok WS.
Lee HW.
Kwong FY.
Chem. Asian J.
2007,
2:
306
12
Alcock NW.
Moore P.
Lampe PA.
Mok KF.
J. Chem. Soc., Dalton Trans.
1982,
207
13 This reaction could not be checked by TLC nor GC-MS, because of its low boiling point (ca. 80 °C). Thus, reactions were stopped at 24 h.
14
General Procedure for Preparation of Catalysts
These complexes were prepared following a literature procedure, and characterized by comparison of the NMR data with literature values, except for 4c, 4d, and 4h. A solution of SMe2 (1.2 mL, 16 mmol) in MeOH (6 mL) was added to a solution of NaAuCl4·2H2O (2.19 g, 5.5 mmol) in MeOH (30 mL) with minimum light exposure. The white precipitate was recovered by filtration, washed (MeOH, Et2O, and pentane), and dried under vacuum. Then, [AuCl(SMe2)] was obtained in 99% yield (1.60 g) and used without further purification. 1H NMR (300 MHz, CDCl3): δ = 2.73 (s, 6 H). A solution of diphenyl(o-tolyl)phosphine (0.589 g, 2 mmol) in acetone (50 mL) was added to a solution of [AuCl(SMe2)] (0.553 g) in acetone (150 mL). The mixture was stirred for 2 h and concentrated, recrystallized from toluene, and dried under vacuum; [AuClPPh2(o-Me-C6H4)](4h) was obtained in 83% (0.83 g). See: Brandys M.-C.
Jennings MC.
Puddephatt RJ.
J. Chem. Soc., Dalton Trans.
2000,
4601
15 ClAuPPh2(o-MeOC6H4)(4c): 1H NMR (600 MHz, CDCl3): δ = 3.71 (3 H, s), 6.82 (1 H, ddd, J = 13.2, 7.8, 1.8 Hz), 6.97 (1 H, dd, J = 8.4, 5.1 Hz), 6.93-6.97 (1 H, m), 7.42-7.47 (4 H, m), 7.49-7.57 (7 H, m). 13C NMR (75.5 Hz, CDCl3): δ = 55.9, 111.6 [d, J(13C-31P) = 4.1 Hz], 116.4 [d, J(13C-31P) = 57.0 Hz], 121.1 [d, J(13C-31P) = 10.8 Hz], 128.4, 128.9 [d, J(13C-31P) = 11.6 Hz], 131.5 [d, J(13C-31P) = 2.5 Hz], 133.9 [d, J(13C-31P) = 1.7 Hz], 134.0 [d, J(13C-31P) = 14.9 Hz], 134.2 [d, J(13C-31P) = 7.5 Hz], 160.7 [d, J(13C-31P) = 5.0 Hz]. 31P NMR (121.5 Hz, CDCl3): δ = 25.0. IR (neat, ATR): 1584, 1572, 1473, 1459, 1435, 1278, 1247, 1101, 1011, 764, 747 cm-1. Anal. Calcd for C19H17AuClOP: C, 43.49; H, 3.27; Cl, 6.76. Found: C, 43.62; H, 3.32; Cl, 6.75. ESI-HRMS: m/z calcd for C19H17AuClOP [M + Na]: 547.0263; found: 547.0267.
ClAuPPh2(p-F3CC6H4) (4d): 1H NMR (600 MHz, CDCl3): δ = 7.48-7.60 (10 H, m), 7.64 (2 H, dd, J = 12.6, 7.8 Hz), 7.72 (2 H, dd, J = 7.8, 1.5 Hz). 13C NMR (75.5 Hz, CDCl3): δ = 121.4 [d, J(13C-31P) = 1.2 Hz], 126.0 [dq, J(13C-31P) = 11.8 Hz, J(13C-19F) = 3.7 Hz], 126.7 [q, J(13C-19F) = 81.3 Hz], 128.0, 129.5 [d, J(13C-31P) = 11.8 Hz], 132.4 [d, J(13C-31P) = 2.5 Hz], 134.2 [d, J(13C-31P) = 8.8 Hz], 134.3 [d, J(13C-31P) = 14.3 Hz]. 31P NMR (121.5 Hz, CDCl3): δ = 33.3. IR (neat, ATR): 1436, 1395, 1322, 1125, 1103, 1061, 1014, 838, 748, 708 cm-1. ESI-HRMS: m/z calcd for C19H14AuClF3P [M + Na]: 585.0031; found: 585.0032.
ClAuPPh2(o-MeC6H4) (4h): 1H NMR (600 MHz, CDCl3): δ = 2.53 (3 H, s), 6.74 (1 H, ddd, J = 12.7, 7.7, 1.2 Hz), 7.18 (1 H, dd, J = 7.5, 7.5 Hz), 7.29-7.33 (1 H, m), 7.43 (1 H, ddd, J = 7.5, 7.5, 1.4 Hz), 7.46-7.51 (4 H, m), 7.53-7.60 (6 H, m). 13C NMR (75.5 Hz, CDCl3): δ = 22.6 [d, J(13C-31P) = 12.2 Hz], 126.3 [d, J(13C-31P) = 10.0 Hz], 126.8 [d, J(13C-31P) = 60.2 Hz], 128.0 [d, J(13C-31P) = 63.8 Hz], 129.4 [d, J(13C-31P) = 12.2 Hz], 131.8 [d, J(13C-31P) = 2.2 Hz], 132.0 [d, J(13C-31P) = 9.3 Hz], 132.1 [d, J(13C-31P) = 2.2 Hz], 133.0 [d, J(13C-31P) = 8.6 Hz], 134.5 [d, J(13C-31P) = 14.3 Hz], 142.0 [d, J(13C-31P) = 12.2 Hz]. 31P NMR (121.5 Hz, CDCl3): δ = 32.1. IR (neat, ATR): 1589, 1479, 1436, 1101, 997, 804, 751, 714 cm-1. Anal. Calcd for C19H17AuClP: C, 44.86; H, 3.37; Cl, 6.97. Found: C, 45.00; H, 3.60; Cl, 6.93. ESI-HRMS: m/z calcd for C19H17AuClP [M + Na]: 531.0314; Found: 531.0314.
1H, 13C, and 31P NMR chemical shifts are reported relative to CDCl3 and 85% H3PO4.
16
General Procedure for Hydroamination of Allenes
To a suspension of [AuClPPh2(o-tolyl)] (25.4 mg, 0.05 mmol) in toluene (0.5 mL) was added morpholine (43.7 mg, 0.502 mmol). To the reaction mixture was added 4-methyl-phenylallene (1a, 79.3 mg, 0.6 mmol) and the resulting mixture was stirred at 80 °C under an Ar atmosphere. The reaction mixture was colorless and heterogeneous at the beginning, but it turned yellow to brown as the reaction progressed. After the reaction was completed (12 h), the reaction mixture was filtered through short Florisil® gel pad with EtOAc as an eluent and the resulting filtered solution was concentrated. The product was purified by column chromatography (basic silica gel, hexane-EtOAc = 100:1 to 10:1) to give 3a in 83% yield (90.8 mg).
17 (E)-4-(3-p-Tolylallyl)morpholine (3a): 1H NMR (300 MHz, CDCl3): δ = 2.31 (3 H, s), 2.40-2.59 (4 H, m), 3.12 (2 H, dd, J = 6.8, 1.3 Hz), 3.72 (4 H, dd, J = 4.7, 4.7 Hz), 6.18 (1 H, dt, J = 15.8, 6.8 Hz), 6.48 (1 H, d, J = 15.8 Hz), 7.10 (2 H, d, J = 8.1 Hz), 7.25 (2 H, d, J = 8.1 Hz). 13C NMR (75.5 Hz, CDCl3): δ = 21.2, 53.7, 61.5, 67.0, 124.9, 126.2, 129.3, 133.3, 134.0, 137.4. IR (neat): 1712, 1512, 1452, 1116, 1006, 968, 869, 809, 776 cm-1. HRMS (EI): m/z calcd for C14H19NO [M+]: 217.1462; found: 217.1464.
4-Cinnamylmorpholine (3b): 1H NMR (300 MHz, CDCl3): δ = 2.45 (4 H, dd, J = 4.6, 4.6 Hz), 3.10 (2 H, dd, J = 6.8, 1.3 Hz), 3.68 (4 H, dd, J = 4.6, 4.6 Hz), 6.19 (1 H, dt, J = 15.8, 6.8 Hz), 6.47 (1 H, d, J = 15.8 Hz), 7.11-7.38 (5 H, m). 13C NMR (75.5 Hz, CDCl3): δ = 53.7, 61.5, 66.9, 125.8, 126.3, 127.6, 128.6, 133.5, 136.7. IR (neat): 1598, 1496, 1451, 1277, 1115, 1006, 966, 868, 741 cm-1. HRMS (EI): m/z calcd for C13H17NO [M+]: 203.1305; found: 203.1308.
(E)-4-(4-Phenylbut-2-enyl)morpholine (3c): 1H NMR (300 MHz, CDCl3): δ = 2.30-2.54 (4 H, m), 2.95 (2 H, dd, J = 6.6, 0.9 Hz), 3.36 (2 H, d, J = 6.6 Hz), 3.70 (4 H, dd, J = 4.8, 4.8 Hz), 5.54 (1 H, dtt, J = 15.2, 6.6, 1.3 Hz), 5.76 (1 H, dtt, J = 15.2, 6.6, 1.3 Hz), 7.11-7.23 (3 H, m), 7.23-7.33 (2 H, m). 13C NMR (75.5 Hz, CDCl3): δ = 38.9, 53.5, 61.1, 67.0, 126.1, 127.3, 128.4, 128.5, 133.4, 140.2. IR (neat): 1603, 1495, 1453, 1116, 1003, 975, 865, 745 cm-1. HRMS (EI): m/z calcd for C14H19NO [M+]: 217.1462; found: 217.1464.
(E)-4-(Undec-2-enyl)morpholine (3d): 1H NMR (300 MHz, CDCl3): δ = 0.81 (3 H, t, J = 6.6 Hz), 1.03-1.43 (12 H, m), 1.95 (2 H, dt, J = 7.0, 6.6 Hz), 2.26-2.48 (4 H, m), 2.86 (2 H, d, J = 6.6 Hz), 3.65 (4 H, dd, J = 4.6, 4.6 Hz), 5.39 (1 H, dt, J = 15.2, 6.6 Hz), 5.54 (1 H, dt, J = 15.2, 6.6 Hz). 13C NMR (75.5 Hz, CDCl3): δ = 14.1, 22.7, 29.2, 29.2, 29.3, 29.4, 31.9, 32.3, 53.5, 61.4, 67.0, 125.6, 135.3. IR (neat): 1720, 1454, 1004, 972, 867 cm-1. HRMS (EI): m/z calcd for C15H29NO [M+]: 239.2244; found: 239.2246.
(E)-4-(3-Cyclohexylallyl)morpholine (3e): 1H NMR (300 MHz, CDCl3): δ = 0.98-1.31 (5 H, m), 1.55-1.85 (5 H, m), 1.85-2.03 (1 H, m), 2.34-2.55 (4 H, m), 2.93 (2 H, d, J = 6.8 Hz), 3.71 (4 H, dd, J = 4.7, 4.7 Hz), 5.40 (1 H, dtd, J = 15.4, 6.6, 0.9 Hz), 5.55 (1 H, dd, J = 15.4, 6.6 Hz). 13C NMR (75.5 Hz, CDCl3): δ = 26.0, 26.1, 32.9, 40.5, 53.5, 61.5, 67.0, 123.0, 141.1. IR (neat): 1718, 1449, 1118, 1005, 971, 866 cm-1. HRMS (EI): m/z calcd for C13H23NO [M+]: 209.1775; found: 209.1779.
(E)-4-(4,4-Dimethylpent-2-enyl)morpholine (3f): 1H NMR (300 MHz, CDCl3): δ = 0.94 (9 H, s), 2.27-2.44 (4 H, m), 2.87 (2 H, dd, J = 6.8, 1.0 Hz), 3.66 (4 H, dd, J = 4.7, 4.7 Hz), 5.32 (1 H, dt, J = 15.6, 6.8 Hz), 5.56 (1 H, d, J = 15.6 Hz). 13C NMR (75.5 Hz, CDCl3): δ = 29.6, 29.7, 53.5, 61.5, 67.0, 120.3, 146.2. IR (neat): 1732, 1454, 1260, 1119, 1005, 975, 868 cm-1. ESI-HRMS: m/z calcd for C11H21NO [M + H]: 184.1696; found: 184.1696.
(E)-4-(4-Phenylbut-3-en-2-yl)morpholine (3g): 1H NMR (300 MHz, CDCl3): δ = 1.24 (3 H, d, J = 6.6 Hz), 2.54 (4 H, dt, J = 4.8, 4.4 Hz), 3.00 (2 H, dq, J = 8.1, 6.6 Hz), 3.71 (4 H, dd, J = 4.4, 4.4 Hz), 6.15 (1 H, dt, J = 15.8, 8.1 Hz), 6.44 (1 H, d, J = 15.8 Hz), 7.14-7.42 (5 H, m). 13C NMR (75.5 Hz, CDCl3): δ = 17.8, 50.8, 63.1, 67.2, 126.2, 127.5, 128.6, 131.2, 132.1, 136.9. IR (neat): 1600, 1494, 1447, 1265, 1116, 963, 864, 747 cm-1. HRMS (EI): m/z calcd for C14H19NO [M+]: 217.1462; found: 217.1465.
(E)-4-(1-Phenylbut-2-enyl)morpholine (3g′): 1H NMR (300 MHz, CDCl3): δ = 1.59 (3 H, dd, J = 6.0, 1.1 Hz), 2.15-2.31 (2 H, m), 2.33-2.56 (2 H, m), 3.48 (1 H, d, J = 8.6 Hz), 3.61 (4 H, dd, J = 4.4, 4.4 Hz), 5.45 (1 H, ddd, J = 15.0, 8.6, 1.1 Hz), 5.58 (1 H, dq, J = 15.0, 6.0 Hz), 7.11-7.31 (5 H, m). 13C NMR (75.5 Hz, CDCl3): δ = 17.8, 52.0, 67.2, 74.6, 127.0, 127.7, 127.9, 128.5, 132.7, 142.3. IR (neat): 1492, 1449, 1271, 1116, 1003, 967, 875, 755 cm-1. ESI-HRMS: m/z calcd for C14H19NO [M + H]: 218.1539; found: 218.1539.
4-(3-Phenylbut-2-enyl)morpholine (3h): inseparable stereoisomeric mixture. 1H NMR (300 MHz, CDCl3): δ = 2.05 (E- and Z-3 H, s), 2.25-2.42 (Z-4 H, m), 2.44-2.60 (E-4 H, m), 2.91 (Z-2 H, d, J = 6.8 Hz), 3.17 (E-2 H, d, J = 6.8 Hz), 3.70 (Z-4 H, dd, J = 4.6, 4.6 Hz), 3.72 (E-4 H, dd, J = 4.6, 4.6 Hz), 5.55 (Z-1 H, td, J = 6.8, 1.3 Hz), 5.86 (E-1 H, td, J = 6.8, 1.3 Hz), 7.09-7.45 (E- and Z-5 H, m).
NOE Experiment for 3h: Two signals were observed by irradiation for Me peak (δ = 2.05 ppm); 0.52% for allyl-H peak of E-isomer (δ = 3.17 ppm) and 1.64% for vinyl-H peak of Z-isomer (δ = 5.55 ppm). From this experiment, we determined that the major product was E-isomer and the E:Z ratio was 5: 4.