Subscribe to RSS
DOI: 10.1055/s-2007-984507
Al/PbCl2-Catalyzed DMF-Mediated Reductive Coupling of Baylis-Hillman Acetates with Tetrachloromethane
Publication History
Publication Date:
25 June 2007 (online)
Abstract
2-(2,2,2-Trichloroethyl)alk-2-enoates could be formed in good E-selectivity by the reductive coupling of Baylis-Hillman acetates with tetrachloromethane in good 76-92% yields in the presence of catalytic Al/PbCl2 and DMF.
Key words
reductive coupling - Baylis-Hillman acetate - tetrachloromethane - catalytic system
-
1a
Bradshaw JWS.Baker R.Howse PE. Nature (London) 1975, 258: 230 -
1b
Garson MJ. Chem. Rev. 1993, 93: 1699 -
1c
D’Auria MV.Minale L.Riccio R. Chem. Rev. 1993, 93: 1839 -
1d
Senokuchi K.Nakai H.Nakayama Y.Odagaki Y.Sakaki K.Kato M.Maruyama T.Miyazaki T.Ito H.Kamiyasu K.Kim S.Kawamura M.Hamanaka N. J. Med. Chem. 1995, 38: 4508 -
1e
Senokuchi K.Nakai H.Nakayama Y.Odagaki Y.Sakaki K.Kato M.Maruyama T.Miyazaki T.Ito H.Kamiyasu K.Kim S.Kawamura M.Hamanaka N. J. Med. Chem. 1995, 38: 2521 -
1f
Watanabe T.Hayashi K.Yoshimatsu S.Sakai K.Takeyama S.Takashima K. J. Med. Chem. 1980, 23: 50 - 2
Marfat A.McGuirk PR.Helquist P. J. Org. Chem. 1979, 44: 3888 -
3a
Kelly SE. Additions to C-X π-Bonds In Comprehensive Organic Synthesis Part 1:Schreiber SL. Pergamon Press; Oxford: 1991. -
3b
Masaki Y.Sakuma K.Kaji K. J. Chem. Soc., Chem. Commun. 1980, 434 -
3c
Brown HC.Basavaiah D. J. Org. Chem. 1982, 47: 5407 -
3d
Denmark SE.Amburgey J. J. Am. Chem. Soc. 1993, 115: 10386 -
3e
Amri H.Rambaud M.Villieras J. Tetrahedron 1990, 46: 3535 -
3f
Katzenellenbogen JA.Utawanit T. J. Am. Chem. Soc. 1974, 96: 6153 -
3g
Kocienski PJ.Ansell JM.Ostrow RW. J. Org. Chem. 1976, 41: 3625 -
3h
Miller JA.Zweifel G. J. Am. Chem. Soc. 1981, 103: 6217 -
3i
Coutrot P.Ghribi A. Synthesis 1986, 790 -
3j
Rossi R.Carpita A.Cossi P. Tetrahedron 1992, 48: 8801 -
3k
Basavaiah D.Krishnamacharyulu N.Hyma RS.Sarma PKS.Kumaragurabaran M. J. Org. Chem. 1999, 64: 1197 -
4a
Baylis AB, andHillman MED. inventors; DE 2155113. ; Chem. Abstr. 1972, 77, 34174q -
4b
Ciganek E. Org. React. 1997, 51: 201 -
4c
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
4d
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
5a
Basavaiah D.Dharma Rao P.Suguna HR. Tetrahedron 1996, 52: 8001 -
5b
Yadav JS.Gupta MK.Pandey SK.Reddy BVS.Sarma AVS. Tetrahedron Lett. 2005, 46: 2761 -
5c
Fuocaud A.EI Guemmont F. Bull. Soc. Chim. Fr. 1989, 403 -
5d
Ko SH.Lee K.-J. J. Heterocycl. Chem. 2004, 41: 613 -
6a
Basavaiah D.Suguna HR.Muthukumara K.Kumaragurubaran N. Synthesis 2000, 217 -
6b
Roy O.Riahi A.Henin F.Muzart J. Tetrahedron 2000, 56: 8133 - 7
Kamaimura A.Morita R.Matsuura K.Mitsudera H.Shirai M. Tetrahedron 2003, 59: 9931 - 8
Kabalka GW.Venkataiah B.Dong G. Tetrahedron Lett. 2003, 44: 4673 - 9
Basabaiah D.Satyanarayana T. Tetrahedron Lett. 2002, 43: 4301 -
10a
Kim JN.Chung YM.Im Y. Tetrahedron Lett. 2002, 43: 6209 -
10b
Chung YM.Lee HJ.Hwang SS.Kim JN. Bull. Korean Chem. Soc. 2001, 22: 799 - 11
Basavaiah D.Bhavani AKD.Pandiaraju S.Sarma PKS. Synlett 1995, 243 -
12a
Basavaiah D.Sarma PKS. J. Chem. Soc., Chem. Commun. 1992, 955 -
12b
Rabe J.Hoffmann HMR. Angew. Chem., Int. Ed. Engl. 1985, 50: 3849 -
12c
Im YJ.Kim JM.Mun JH.Kim JN. Bull. Korean Chem. Soc. 2001, 22: 349 - 13
Lee CH.Song YS.Cho HI.Yang JW.Lee K.-J. J. Heterocycl. Chem. 2003, 40: 1103 - 14
Chandrasekhar S.Saritha B.Jagadeshwar V.Narsihmulu C.Vijay D.Sarma GD.Jagadeesh B. Tetrahedron Lett. 2006, 47: 2981 - 15
Srihari P.Sigh AP.Jain R.Yadav JS. Synthesis 2006, 2772 - 16
Liu YK.Xu XS.Zheng H.Xu DQ.Xu ZY.Zhang YM. Synlett 2006, 571 - 17
Hong WP.Lee K.-J. Synthesis 2005, 33 -
18a
Basavavaiah D.Sarma PKS.Bhavani AKD. J. Chem. Soc., Chem. Commun. 1994, 1091 -
18b
Amri H.Rambaud M.Villieras J. J. Organomet. Chem. 1990, 384: 1 -
18c
Amri H.Rambaud M.Villieras JJ. Tetrahedron 1990, 46: 3535 -
18d
Song YS.Lee K.-J. J. Heterocycl. Chem. 2006, 43: 1721 - 19
Das B.Banerjee J.Mahender G.Majhi A. Org. Lett. 2004, 6: 3349 -
20a
Liu YK.Li J.Zheng H.Xu DQ.Xu ZY.Zhang YM. Synlett 2005, 2999 -
20b
Liu YK.Zheng H.Xu DQ.Xu ZY.Zhang YM. Synlett 2006, 2492 -
20c
Liu YK.Xu DQ.Xu ZY.Zhang YM. J. Zhejiang Univ., SCIENCE B 2006, 7: 393 - 21
Tanaka H.Kuroboshi M. Curr. Org. Chem. 2004, 8: 1027 - According to literature reports, in the 1H NMR spectrum of a trisubstituted alkene the β-vinylic protons, cis and trans to the ester group, are known to resonate at around δ = 7.5 and 6.5 ppm, respectively, when the alkene is substituted by an aryl group; while the same proton cis and trans to an ester group appears at around δ = 6.8 and 5.7 ppm, respectively, when substituted by an alkyl group. See:
-
22a
Larson GL.de Kaifer CF.Seda R.Torres LE.Ramirez JR. J. Org. Chem. 1984, 49: 3385 -
22b
Basavaiah D.Sarma PKS.Bhavani AKD. J. Chem. Soc., Chem. Commun. 1994, 1091 -
22c
Baraldi PG.Guarneri M.Pollini GP.Simoni D.Barco A.Benetti S. J. Chem. Soc., Perkin Trans. 1 1984, 2501 -
22d
Tanaka K.Yamagishi N.Tanikaga R.Kaji A. Bull. Chem. Soc. Jpn. 1983, 56: 528 -
23a
Tanaka H.Yamashita S.Yamanoue M.Torri S. J. Org. Chem. 1989, 54: 444 -
23b
Tanaka H.Yamashita S.Katayama Y.Torri S. Chem. Lett. 1986, 2043 -
23c
Tanaka H.Yamashita S.Ikemoto Y.Torri S. Chem. Lett. 1987, 673 -
23d
Tanaka H.Yamashita S.Ikemoto Y.Torri S. Tetrahedron Lett. 1988, 29: 1721 -
24a
Falck JR.He A.Bejot R.Mioskowski C. Synlett 2006, 2652 -
24b
Baati R.Barma DK.Krishna UM.Mioskowski C.Falck JR. Tetrahedron Lett. 2002, 43: 959
References and Notes
General Procedure for the Synthesis of 2-(2,2,2-Tri-chloroethyl)alk-2-enoates 2 In a 25 mL flask were added Al powder (0.032 g, 1.2 mmol), PbCl2 (0.055g, 0.2 mmol), Baylis-Hillman acetate 1 (1 mmol), CCl4 (0.20 mL, 2.0 mmol), and anhyd DMF (5 mL). The mixture was stirred at r.t. for 2-4 h. Upon completion, the solvent was removed under vacuum. Then, to the flask was added 10 mL 5% HCl for quenching the reaction, and the mixture was extracted by CH2Cl2 (2 × 30 mL), washed with brine (15 mL), dried over MgSO4. After evaporation of the solvent, the residue was purified by chromatography using cyclohexane-EtOAc (6:1) as eluent to give pure 2.
26
Data for Compounds 2
Compound (E)-2a: 1H NMR (400 MHz, CDCl3): δ = 3.85 (s, 3 H, OCH3), 4.17 (s, 2 H, CH2), 7.32-7.39 (m, 5 H, ArH), 7.94 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 49.56, 52.32, 98.27, 126.66, 128.69, 128.84, 128.92, 134.88, 144.85, 168.27. IR (film): ν = 3060, 3028, 2952, 1724, 1633, 1577 cm-1. MS (70 eV): m/z (%) = 292 [M+]. Anal. Calcd for C12H11Cl3O2: C, 49.09; H, 3.78. Found: C, 49.38; H, 3.74.
Compound (E)-2b: 1H NMR (400 MHz, CDCl3): δ = 2.37 (s, 3 H, CH3), 3.86 (s, 3 H, OCH3), 4.19 (s, 2 H, CH2), 7.21 (d, 2 H, J = 8.0 Hz, ArH), 7.35 (d, 2 H, J = 8.0 Hz, ArH), 7.91 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 21.30, 49.74, 52.31, 98.48, 125.76, 129.14, 129.46, 131.97, 139.33, 144.98, 168.54. IR (film): ν = 3027, 3025, 2997, 2952, 1720, 1632, 1609 cm-1. MS (70 eV): m/z (%) = 306 [M+]. Anal. Calcd for C13H13Cl3O2: C, 50.76; H, 4.26. Found: C, 50.48; H, 4.30.
Compound (E)-2c: 1H NMR (400 MHz, CDCl3): δ = 3.84 (s, 3 H, OCH3), 3.86 (s, 3 H, OCH3), 4.10 (s, 2 H, CH2), 6.91 (d, 1 H, J = 8.0 Hz, ArH), 6.98 (t, 1 H, J = 8.0 Hz, ArH), 7.29 (d, 1 H, J = 8.0 Hz, ArH), 7.34 (t, 1 H, J = 8.0 Hz, ArH), 8.03 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 50.0, 52.28, 55.53, 98.51, 111.0, 120.54, 124.35, 126.91, 129.10, 130.36, 141.97, 157.29, 168.27. IR (film): ν = 3042, 3001, 2951, 2846, 1719, 1637, 1597 cm-1. MS (70 eV): m/z (%) = 322 [M+]. Anal. Calcd for C13H13Cl3O3: C, 48.25; H, 4.05. Found: C, 48.53; H, 4.08.
Compound (E)-2d: 1H NMR (400 MHz, CDCl3): δ = 3.84 (s, 3 H, OCH3), 4.17 (s, 2 H, CH2), 6.0 (s, 2 H, OCH2O), 6.83 (d, 1 H, J = 8.0 Hz, ArH), 6.95 (d, 1 H, J = 8.0 Hz, ArH), 6.99 (s, 1 H, ArH), 7.83 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 49.56, 52.30, 98.41, 101.44, 108.55, 108.84, 124.39, 124.90, 128.57, 144.52, 147.96, 148.39, 168.48. IR (film): ν = 3054, 3002, 2900, 1718, 1616 cm-1. MS (70 eV): m/z (%) = 336 [M+]. Anal. Calcd for C13H11Cl3O4: C, 46.25; H, 3.28. Found: C, 46.52; H, 3.25
Compound (E)-2e: 1H NMR (400 MHz, CDCl3): δ = 3.86 (s, 3 H, OCH3), 4.13 (s, 2 H, CH2), 7.35 (d, 2 H, J = 8.0 Hz, ArH), 7.40 (d, 2 H, J = 8.0 Hz, ArH), 7.88 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 49.59, 52.48, 98.10, 127.33, 129.07, 130.22, 133.37, 142.13, 143.51, 168.10. IR (film): ν = 3003, 2952, 2850, 1710, 1635, 1591 cm-1. MS (70 eV): m/z (%) = 328 [M+]. Anal. Calcd for C12H10Cl4O2: C, 43.94; H, 3.07. Found: C, 43.68; H, 3.11.
Compound (E)-2f: 1H NMR (400 MHz, CDCl3): δ = 3.88 (s, 3 H, OCH3), 4.04 (s, 2 H, CH2), 7.21-7.43 (m, 4 H, ArH), 7.97 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 49.41, 52.50, 97.70, 126.18, 128.43, 129.25, 129.79, 129.90, 133.87, 142.41, 167.60. IR (film): ν = 3061, 2998, 2952, 1721, 1641, 1590 cm-1. MS (70 eV): m/z (%) = 328 [M+]. Anal. Calcd for C12H10Cl4O2: C, 43.94; H, 3.07. Found: C, 43.75; H, 3.04.
Compound (E)-2g: 1H NMR (400 MHz, CDCl3): δ = 3.88 (s, 3 H, OCH3), 4.01 (s, 2 H, CH2), 7.24 (d, 1 H, J = 8.0 Hz, ArH), 7.29 (d, 1 H, J = 8.0 Hz, ArH), 7.45 (s, 1 H, ArH), 7.89 (s, 1 H, ArCH=). 13C NMR (100 MHz, CDCl3): δ = 49.34, 52.54, 97.49, 127.25, 128.98, 129.70, 130.0, 132.37, 134.59, 135.12, 140.07, 141.12, 166.50. IR (film): ν = 3092, 3001, 2954, 1729, 1643, 1586 cm-1. MS (70 eV): m/z (%) = 362 [M+]. Anal. Calcd for C12H9Cl5O2: C, 39.76; H, 2.50. Found: C, 39.51; H, 2.53.
Compound (E)-2h: 1H NMR (400 MHz, CDCl3): δ = 3.90 (s, 3 H, OCH3), 4.13 (s, 2 H, CH2), 7.64 (t, 1 H, J = 8.0 Hz, ArH), 7.75 (d, 1 H, J = 8.0 Hz, ArH), 7.97 (s, 1 H), 8.22 (d, 1 H, J = 8.0 Hz, ArH), 8.27 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 49.26, 52.61, 97.62, 123.37, 129.15, 129.84, 134.41, 136.54, 140.81, 141.90, 148.22, 167.45. IR (film): ν = 3086, 2954, 1725, 1639, 1532 cm-1. MS (70 eV):
m/z (%) = 337 [M+]. Anal. Calcd for C12H10Cl3NO2: C, 42.57; H, 2.98. Found: C, 42.33; H, 2.95.
Compound (E)-2i: 1H NMR (400 MHz, CDCl3): δ = 3.83 (s, 3 H, OCH3), 4.39 (s, 2 H, CH2), 6.51 (d, 1 H, J = 1.2 Hz, ArH), 6.74 (dd, 1 H, J
1 = 4.0 Hz, J
2 = 1.2 Hz, ArH), 7.42 (s, 1 H, ArCH=), 7.59 (d, 1 H, J = 4.0 Hz, ArH). 13C NMR (100 MHz, CDCl3): δ = 50.44, 52.30, 98.64, 112.16, 118.54, 121.02, 130.39, 145.17, 150.41, 168.35. IR (film): ν = 2952, 1717, 1636 cm-1. MS (70 eV): m/z (%) = 282 [M+]. Anal. Calcd for C10H9Cl3O3: C, 42.36; H, 3.20. Found: C, 42.58; H, 3.25.
Compound (E)-2j: 1H NMR (400 MHz, CDCl3): δ = 2.68 (q, 2 H, J = 8.0 Hz, CH2), 2.78 (t, 2 H, J = 8.0 Hz, CH2), 3.77 (s, 3 H, OCH3), 3.78 (s, 2 H, CH2), 7.09 (t, 1 H, J = 8.0 Hz, CH=), 7.16-7.31 (m, 5 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 31.88, 34.44, 50.07, 52.11, 98.68, 126.27, 128.24, 128.36, 128.51, 140.42, 148.00, 167.73. IR (film): ν = 3063, 3028, 2950, 1723, 1646, 1603 cm-1. MS (70 eV): m/z (%) = 320 [M+]. Anal. Calcd for C14H15Cl3O2: C, 52.28; H, 4.70. Found: C, 52.54; H, 4.64.
Compound (E)-2k: 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, 3 H, J = 6.8 Hz, CH3), 1.27-1.33 (m, 10 H), 2.37 (q, 2 H, J = 8.0 Hz, CH2), 3.78 (s, 3 H, OCH3), 3.85 (s, 2 H, CH2), 7.06 (t, 1 H, J = 8.0 Hz, CH=). 13C NMR (100 MHz, CDCl3): δ = 13.99, 22.55, 28.41, 29.01, 29.29, 30.08, 31.65, 50.20, 52.02, 98.88, 125.71, 149.75, 167.92. IR (film): ν = 2927, 2856, 1724, 1646 cm-1. MS (70 eV): m/z (%) = 314 [M+]. Anal. Calcd for C13H21Cl3O2: C, 49.46; H, 6.71. Found: C, 49.28; H, 6.66.