References and Notes
For general information, see:
1a
Renaud P.
Gerster M.
Angew. Chem. Int. Ed.
1998,
37:
2562
1b
Sibi MP.
Porter NA.
Acc. Chem. Res.
1999,
32:
163
1c
Bar G.
Parsons AF.
Chem. Soc. Rev.
2003,
32:
251
1d
Sibi MP.
Manyem S.
Zimmerman J.
Chem. Rev.
2003,
103:
3263
For selected examples of enantioselective radical additions and allylations, see:
2a
Sibi MP.
Petrovic G.
Zimmerman J.
J. Am. Chem. Soc.
2005,
127:
2390
2b
Sibi MP.
Zimmerman J.
Rheault T.
Angew. Chem. Int. Ed.
2003,
42:
4521
2c
Watanabe Y.
Mase N.
Furue R.
Toru T.
Tetrahedron Lett.
2001,
42:
2981
2d
Iserloh U.
Curran DP.
Kanemasa S.
Tetrahedron: Asymmetry
1999,
10:
2417
2e
Murakata M.
Jono T.
Mizuno Y.
Hoshino O.
J. Am. Chem. Soc.
1997,
119:
11713
2f
Sibi MP.
Ji J.
Wu JH.
Gürtler S.
Porter NA.
J. Am. Chem. Soc.
1996,
118:
9200
2g
Wu JH.
Radinov R.
Porter NA.
J. Am. Chem. Soc.
1995,
117:
11029
For selected examples of enantioselective H-atom transfer reactions, see:
3a
Sibi MP.
Patil K.
Angew. Chem. Int. Ed.
2004,
43:
1235
3b
Sibi MP.
Asano Y.
Sausker JB.
Angew. Chem. Int. Ed.
2001,
40:
1293
3c
Murakata M.
Tsutsui H.
Takeuchi N.
Hoshino O.
Tetrahedron
1999,
55:
10295
For selected examples of enantioselective reductions using chiral H-atom transfer reagents, see:
4a
Cai Y.
Roberts BP.
Tocher DA.
J. Chem. Soc., Perkin Trans. 1
2002,
1376
4b
Dakternieks D.
Schiesser CH.
Aust. J. Chem.
2001,
54:
89
4c
Blumenstein M.
Schwarzkopf K.
Metzger JO.
Angew. Chem. Int. Ed.
1997,
36:
235
4d
Nanni D.
Curran DP.
Tetrahedron: Asymmetry
1996,
7:
2417
5
Nishida M.
Hayashi H.
Nishida A.
Kawahara N.
Chem. Commun.
1996,
579
6
Hiroi K.
Ishii M.
Tetrahedron Lett.
2000,
41:
7071
7a
Yang D.
Gu S.
Yan Y.-L.
Zhu N.-Y.
Cheung K.-K.
J. Am. Chem. Soc.
2001,
123:
8612
7b
Yang D.
Gu S.
Yan Y.-L.
Zhao H.-W.
Zhu N.-Y.
Angew. Chem. Int. Ed.
2002,
41:
3014
7c
Yang D.
Zheng B.-F.
Gao Q.
Gu S.
Zhu N.-Y.
Angew. Chem. Int. Ed.
2005,
45:
255
8 Transfer of chirality in radical cyclization has been reported. See: Curran DP.
Liu W.
Chen CH.-T.
J. Am. Chem. Soc.
1999,
121:
11012
9
Miyabe H.
Asada R.
Toyoda A.
Takemoto Y.
Angew. Chem. Int. Ed.
2006,
45:
5863
For reviews on the radical reaction of imines, see:
10a
Fallis AG.
Brinza IM.
Tetrahedron
1997,
53:
17543
10b
Naito T.
Heterocycles
1999,
50:
505
10c
Friestad GK.
Tetrahedron
2001,
57:
5461
10d
Miyabe H.
Naito T.
J. Synth. Org. Chem. Jpn.
2001,
59:
35
10e
Miyabe H.
Ueda M.
Naito T.
Synlett
2004,
1140
For our recent studies on radical reaction of imines, see:
11a
Miyabe H.
Yamaoka Y.
Takemoto Y.
Synlett
2004,
2597
11b
Miyabe H.
Yamaoka Y.
Takemoto Y.
J. Org. Chem.
2005,
70:
3324
11c
Ueda M.
Miyabe H.
Teramachi M.
Miyata O.
Naito T.
J. Org. Chem.
2005,
70:
6653
12
Friestad GK.
Shen Y.
Ruggles EL.
Angew. Chem. Int. Ed.
2003,
42:
5061
13a
Miyabe H.
Ushiro C.
Ueda M.
Yamakawa K.
Naito T.
J. Org. Chem.
2000,
65:
176
13b
Miyabe H.
Yamaoka Y.
Takemoto Y.
J. Org. Chem.
2006,
71:
2099
For our recent studies on radical addition-cyclization of oxime ethers, see:
14a
Miyabe H.
Ueda M.
Fujii K.
Nishimura A.
Naito T.
J. Org. Chem.
2003,
68:
5618
14b
Miyabe H.
Tanaka H.
Naito T.
Chem. Pharm. Bull.
2004,
52:
74
Hydroxamic acid derivatives were explored as achiral templates in Diels-Alder reaction. See:
15a
Corminboeuf O.
Renaud P.
Org. Lett.
2002,
4:
1731
15b
Corminboeuf O.
Renaud P.
Org. Lett.
2002,
4:
1735
16 Oxime ethers and hydrazones have emerged as excellent radical acceptors.
For reviews, see:
17a
Yorimitsu H.
Shinokubo H.
Oshima K.
Synlett
2002,
674
17b
Ollivier C.
Renaud P.
Chem. Rev.
2001,
101:
3415
18 The absolute configuration at the stereocenter of cis-3a was assumed from the similarity between the present reaction and the previously reported reaction.9 The relative configuration of the trans and cis diastereomers was determined by NOESY experiments.
19 Since the activity of triethylborane also influenced the enantioselectivity, we used a newly opened bottle of 1 M Et3B in hexane for this experiment.
20 We also tested the effect of additives and other radical initiators. When a stoichiometric amount of Bu3SnH was employed as a chain carrier, the enantioselectivity was remarkably diminished, leading to a 40% ee of cis-3a in 8% yield after being stirred at -78 °C for 3 h. In the case of the reaction using Et2Zn or 9-BBN as a radical initiator, no reaction occurred.
21
Typical Experimental Procedure:
A solution of oxime ether 1a (41 mg, 0.12 mmol), Zn(OTf)2 (43 mg, 0.12 mmol) and ligand 2 (43 mg, 0.12 mmol) in CH2Cl2 (1.0 mL) was stirred for 30 min under a nitrogen atmosphere at 20 °C. To the reaction mixture were added i-PrI (0.36 mL, 3.6 mmol) and Et3B (1.0 M in hexane, 2.4 mL, 2.4 mmol) at -78 °C. After being stirred at the same temperature for 10 h, the reaction mixture was diluted with sat. NaHCO3 and then extracted with EtOAc. The organic phase was dried over MgSO4 and concentrated at reduced pressure. Purification of the residue by column chromatography (hexane-EtOAc, 2:1) afforded product 3a (32 mg, 70%) as a mixture of cis and trans isomers which were separated by column chromatography (hexane-EtOAc, 4:1). The enantioselectivity of products was determined by HPLC using AD-H column.
Representative Characterization Data:
cis-3a: colorless oil; [α]27
D -11.4 (c = 0.28, CHCl3; 85% ee). IR (CHCl3): 1704 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.27-7.46 (m, 10 H), 5.35 (s, 1 H), 4.98 (d, J = 11.0 Hz, 1 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.60 (s, 2 H), 3.28-3.37 (m, 2 H), 3.23 (m, 1 H), 1.75 (m, 1 H), 1.50 (dd, J = 4.8, 14.6 Hz, 1 H), 1.21 (dd, J = 7.4, 14.6 Hz, 1 H), 1.15 (s, 3 H), 0.91 (d, J = 6.7 Hz, 3 H), 0.89 (d, J = 6.8 Hz, 3 H). 13C NMR (126 Hz, CDCl3): δ = 173.4, 137.3, 135.3, 129.5, 128.9, 128.6 (2 × C), 128.4, 128.1, 76.6, 76.3, 61.8, 49.1, 44.5, 39.2, 25.0, 24.1, 23.7, 22.0. MS (FAB+): m/z = 383 (88) [M + H+], 91 (100). HRMS (FAB+): m/z [M + H+] calcd for C23H31N2O3: 383.2335; found: 383.2331.
trans-3a: colorless oil. IR (CHCl3): 1705 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.27-7.47 (m, 10 H), 5.37 (s, 1 H), 4.97 (d, J = 11.0 Hz, 1 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.61 (s, 2 H), 3.56 (m, 1 H), 3.44 (dd, J = 7.0, 8.9 Hz, 1 H), 3.04 (dd, J = 6.4, 8.9 Hz, 1 H), 1.64 (m, 1 H), 1.39-1.52 (m, 2 H), 1.00 (s, 3 H), 0.89 (d, J = 6.7 Hz, 3 H), 0.83 (d, J = 6.7 Hz, 3 H). 13C NMR (126 Hz, CDCl3): δ = 174.0, 137.3, 135.3, 129.5, 128.9, 128.6, 128.5 (2 × C), 128.1, 76.5, 76.4, 56.9, 49.3, 44.7, 44.6, 24.7, 24.5, 22.9, 17.5. MS (FAB+): m/z = 383 (63) [M + H+], 91 (100). HRMS (FAB+): m/z [M + H+] calcd for C23H31N2O3: 383.2335; found: 383.2342.