Subscribe to RSS
DOI: 10.1055/s-2007-984530
Enantioselective Cascade Radical Addition-Cyclization of Oxime Ethers
Publication History
Publication Date:
25 June 2007 (online)
Abstract
The chiral Lewis acid promoted reaction of oxime ethers proceeded smoothly with good enantio- and diastereoselectivities via a cascade radical addition-cyclization process.
Key word
radical - enantioselective - Lewis acid - oxime ether - cascade
- For general information, see:
-
1a
Renaud P.Gerster M. Angew. Chem. Int. Ed. 1998, 37: 2562 -
1b
Sibi MP.Porter NA. Acc. Chem. Res. 1999, 32: 163 -
1c
Bar G.Parsons AF. Chem. Soc. Rev. 2003, 32: 251 -
1d
Sibi MP.Manyem S.Zimmerman J. Chem. Rev. 2003, 103: 3263 - For selected examples of enantioselective radical additions and allylations, see:
-
2a
Sibi MP.Petrovic G.Zimmerman J. J. Am. Chem. Soc. 2005, 127: 2390 -
2b
Sibi MP.Zimmerman J.Rheault T. Angew. Chem. Int. Ed. 2003, 42: 4521 -
2c
Watanabe Y.Mase N.Furue R.Toru T. Tetrahedron Lett. 2001, 42: 2981 -
2d
Iserloh U.Curran DP.Kanemasa S. Tetrahedron: Asymmetry 1999, 10: 2417 -
2e
Murakata M.Jono T.Mizuno Y.Hoshino O. J. Am. Chem. Soc. 1997, 119: 11713 -
2f
Sibi MP.Ji J.Wu JH.Gürtler S.Porter NA. J. Am. Chem. Soc. 1996, 118: 9200 -
2g
Wu JH.Radinov R.Porter NA. J. Am. Chem. Soc. 1995, 117: 11029 - For selected examples of enantioselective H-atom transfer reactions, see:
-
3a
Sibi MP.Patil K. Angew. Chem. Int. Ed. 2004, 43: 1235 -
3b
Sibi MP.Asano Y.Sausker JB. Angew. Chem. Int. Ed. 2001, 40: 1293 -
3c
Murakata M.Tsutsui H.Takeuchi N.Hoshino O. Tetrahedron 1999, 55: 10295 - For selected examples of enantioselective reductions using chiral H-atom transfer reagents, see:
-
4a
Cai Y.Roberts BP.Tocher DA. J. Chem. Soc., Perkin Trans. 1 2002, 1376 -
4b
Dakternieks D.Schiesser CH. Aust. J. Chem. 2001, 54: 89 -
4c
Blumenstein M.Schwarzkopf K.Metzger JO. Angew. Chem. Int. Ed. 1997, 36: 235 -
4d
Nanni D.Curran DP. Tetrahedron: Asymmetry 1996, 7: 2417 - 5
Nishida M.Hayashi H.Nishida A.Kawahara N. Chem. Commun. 1996, 579 - 6
Hiroi K.Ishii M. Tetrahedron Lett. 2000, 41: 7071 -
7a
Yang D.Gu S.Yan Y.-L.Zhu N.-Y.Cheung K.-K. J. Am. Chem. Soc. 2001, 123: 8612 -
7b
Yang D.Gu S.Yan Y.-L.Zhao H.-W.Zhu N.-Y. Angew. Chem. Int. Ed. 2002, 41: 3014 -
7c
Yang D.Zheng B.-F.Gao Q.Gu S.Zhu N.-Y. Angew. Chem. Int. Ed. 2005, 45: 255 - 8 Transfer of chirality in radical cyclization has been reported. See:
Curran DP.Liu W.Chen CH.-T. J. Am. Chem. Soc. 1999, 121: 11012 - 9
Miyabe H.Asada R.Toyoda A.Takemoto Y. Angew. Chem. Int. Ed. 2006, 45: 5863 - For reviews on the radical reaction of imines, see:
-
10a
Fallis AG.Brinza IM. Tetrahedron 1997, 53: 17543 -
10b
Naito T. Heterocycles 1999, 50: 505 -
10c
Friestad GK. Tetrahedron 2001, 57: 5461 -
10d
Miyabe H.Naito T. J. Synth. Org. Chem. Jpn. 2001, 59: 35 -
10e
Miyabe H.Ueda M.Naito T. Synlett 2004, 1140 - For our recent studies on radical reaction of imines, see:
-
11a
Miyabe H.Yamaoka Y.Takemoto Y. Synlett 2004, 2597 -
11b
Miyabe H.Yamaoka Y.Takemoto Y. J. Org. Chem. 2005, 70: 3324 -
11c
Ueda M.Miyabe H.Teramachi M.Miyata O.Naito T. J. Org. Chem. 2005, 70: 6653 - 12
Friestad GK.Shen Y.Ruggles EL. Angew. Chem. Int. Ed. 2003, 42: 5061 -
13a
Miyabe H.Ushiro C.Ueda M.Yamakawa K.Naito T. J. Org. Chem. 2000, 65: 176 -
13b
Miyabe H.Yamaoka Y.Takemoto Y. J. Org. Chem. 2006, 71: 2099 - For our recent studies on radical addition-cyclization of oxime ethers, see:
-
14a
Miyabe H.Ueda M.Fujii K.Nishimura A.Naito T. J. Org. Chem. 2003, 68: 5618 -
14b
Miyabe H.Tanaka H.Naito T. Chem. Pharm. Bull. 2004, 52: 74 - Hydroxamic acid derivatives were explored as achiral templates in Diels-Alder reaction. See:
-
15a
Corminboeuf O.Renaud P. Org. Lett. 2002, 4: 1731 -
15b
Corminboeuf O.Renaud P. Org. Lett. 2002, 4: 1735 - For reviews, see:
-
17a
Yorimitsu H.Shinokubo H.Oshima K. Synlett 2002, 674 -
17b
Ollivier C.Renaud P. Chem. Rev. 2001, 101: 3415
References and Notes
Oxime ethers and hydrazones have emerged as excellent radical acceptors.
18The absolute configuration at the stereocenter of cis-3a was assumed from the similarity between the present reaction and the previously reported reaction.9 The relative configuration of the trans and cis diastereomers was determined by NOESY experiments.
19Since the activity of triethylborane also influenced the enantioselectivity, we used a newly opened bottle of 1 M Et3B in hexane for this experiment.
20We also tested the effect of additives and other radical initiators. When a stoichiometric amount of Bu3SnH was employed as a chain carrier, the enantioselectivity was remarkably diminished, leading to a 40% ee of cis-3a in 8% yield after being stirred at -78 °C for 3 h. In the case of the reaction using Et2Zn or 9-BBN as a radical initiator, no reaction occurred.
21
Typical Experimental Procedure:
A solution of oxime ether 1a (41 mg, 0.12 mmol), Zn(OTf)2 (43 mg, 0.12 mmol) and ligand 2 (43 mg, 0.12 mmol) in CH2Cl2 (1.0 mL) was stirred for 30 min under a nitrogen atmosphere at 20 °C. To the reaction mixture were added i-PrI (0.36 mL, 3.6 mmol) and Et3B (1.0 M in hexane, 2.4 mL, 2.4 mmol) at -78 °C. After being stirred at the same temperature for 10 h, the reaction mixture was diluted with sat. NaHCO3 and then extracted with EtOAc. The organic phase was dried over MgSO4 and concentrated at reduced pressure. Purification of the residue by column chromatography (hexane-EtOAc, 2:1) afforded product 3a (32 mg, 70%) as a mixture of cis and trans isomers which were separated by column chromatography (hexane-EtOAc, 4:1). The enantioselectivity of products was determined by HPLC using AD-H column.
Representative Characterization Data:
cis-3a: colorless oil; [α]27
D -11.4 (c = 0.28, CHCl3; 85% ee). IR (CHCl3): 1704 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.27-7.46 (m, 10 H), 5.35 (s, 1 H), 4.98 (d, J = 11.0 Hz, 1 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.60 (s, 2 H), 3.28-3.37 (m, 2 H), 3.23 (m, 1 H), 1.75 (m, 1 H), 1.50 (dd, J = 4.8, 14.6 Hz, 1 H), 1.21 (dd, J = 7.4, 14.6 Hz, 1 H), 1.15 (s, 3 H), 0.91 (d, J = 6.7 Hz, 3 H), 0.89 (d, J = 6.8 Hz, 3 H). 13C NMR (126 Hz, CDCl3): δ = 173.4, 137.3, 135.3, 129.5, 128.9, 128.6 (2 × C), 128.4, 128.1, 76.6, 76.3, 61.8, 49.1, 44.5, 39.2, 25.0, 24.1, 23.7, 22.0. MS (FAB+): m/z = 383 (88) [M + H+], 91 (100). HRMS (FAB+): m/z [M + H+] calcd for C23H31N2O3: 383.2335; found: 383.2331.
trans-3a: colorless oil. IR (CHCl3): 1705 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.27-7.47 (m, 10 H), 5.37 (s, 1 H), 4.97 (d, J = 11.0 Hz, 1 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.61 (s, 2 H), 3.56 (m, 1 H), 3.44 (dd, J = 7.0, 8.9 Hz, 1 H), 3.04 (dd, J = 6.4, 8.9 Hz, 1 H), 1.64 (m, 1 H), 1.39-1.52 (m, 2 H), 1.00 (s, 3 H), 0.89 (d, J = 6.7 Hz, 3 H), 0.83 (d, J = 6.7 Hz, 3 H). 13C NMR (126 Hz, CDCl3): δ = 174.0, 137.3, 135.3, 129.5, 128.9, 128.6, 128.5 (2 × C), 128.1, 76.5, 76.4, 56.9, 49.3, 44.7, 44.6, 24.7, 24.5, 22.9, 17.5. MS (FAB+): m/z = 383 (63) [M + H+], 91 (100). HRMS (FAB+): m/z [M + H+] calcd for C23H31N2O3: 383.2335; found: 383.2342.