References and Notes
1
Torisu K.
Kobayashi K.
Iwahashi M.
Nakai Y.
Onoda T.
Nagase T.
Sugimoto I.
Okada Y.
Matsumoto R.
Nanbu F.
Ohuchida S.
Nakai H.
Toda M.
Bioorg. Med. Chem.
2004,
12:
5361
2
Ohtake Y.
Naito A.
Hasegawa H.
Kawano K.
Morizono D.
Taniguchi M.
Tanaka Y.
Matsukawa H.
Naito K.
Oguma T.
Ezure Y.
Tsuriya Y.
Bioorg. Med. Chem.
1999,
7:
1247
3a
Barrows TH.
Farina PR.
Chrzanowski RL.
Benkovic PA.
Benkovic SJ.
J. Am. Chem. Soc.
1976,
98:
3678
3b
Fisher GH.
Schultz HP.
J. Org. Chem.
1974,
39:
631
3c
Benkovic SJ.
Barrows TH.
Farina PR.
J. Am. Chem. Soc.
1973,
95:
8414
4a
Pitts MR.
Harrison JR.
Moody CJ.
J. Chem. Soc., Perkin Trans. 1
2001,
955
4b
Taylor EC.
McKillop A.
J. Am. Chem. Soc.
1965,
87:
1984
4c
Cavagnol JC.
Wiselogle FY.
J. Am. Chem. Soc.
1947,
69:
795
5a
Yang S.-C.
Liu P.-C.
Feng W.-H.
Tetrahedron Lett.
2004,
45:
4951
5b
Yang S.-C.
Shue Y.-J.
Liu P.-C.
Organometallics
2002,
21:
2013
5c
Massacret M.
Lhoste P.
Sinou D.
Eur. J. Org. Chem.
1999,
129
6
Nair V.
Dhanya R.
Rajesh C.
Bhadbhade MM.
Manoj K.
Org. Lett.
2004,
6:
4743
7
Bunce RA.
Herron DM.
Ackerman ML.
J. Org. Chem.
2000,
65:
2847
8a
Bunce RA.
Herron DM.
Hale LY.
J. Heterocycl. Chem.
2003,
40:
1031
8b
Rylander PN.
Hydrogenation Methods
Academic Press;
New York:
1985.
p.82-93
9
Tapia RA.
Centella CR.
Valderrama JA.
Synth. Commun.
1999,
29:
2163
10a
LaBarbera DV.
Skibo EB.
Bioorg. Med. Chem.
2005,
13:
387
10b
Krchňák V.
Smith J.
Vagner J.
Tetrahedron Lett.
2001,
42:
2443
11
Meriσor E.
Conrad J.
Klaiber I.
Mika S.
Beifuss U.
Angew. Chem. Int. Ed.
2007,
46:
3353
12
Selected Data for 2a (Figure
[3]
):
R
f
0.40 (PE-EtOAc, 20:1). IR (ATR): 3376 (NH), 2952, 2854 (Me, CH2), 1691 (C=O), 1604, 1501 (C=C), 1435, 1382, 1372 (COO-), 1232, 1211, 1146, 1061 (=COC), 900, 760, 741 cm-1. UV-Vis (EtOH): λmax (log ε) = 307 (2.48), 253 (2.40), 220 (2.34) nm. 1H NMR (300 MHz, CDCl3): δ = 1.85 (s, 3 H, 3′-Me), 3.58 (dd, 2
J = 12.3 Hz, 3
J = 6.2 Hz, 1 H, 2-H), 3.81 (s, 3 H, OMe), 3.98 (dd, 3
J = 3.4, 6.2 Hz, 1 H, 3-H), 4.02 (dd, 2
J = 12.3 Hz, 3
J = 3.3 Hz, 1 H, 2-H), 4.98 (br s, 1 H, 2′-H), 5.05 (br s, 1 H, 2′-H), 6.65 (dd, 3
J = 8.0 Hz, 4
J = 1.4 Hz, 1 H, 5-H), 6.70 (ddd, 3
J = 7.4, 8.2 Hz, 4
J = 1.5 Hz, 1 H, 7-H), 6.97 (ddd, 3
J = 7.4, 7.9 Hz, 4
J = 1.4 Hz, 1 H, 6-H), 7.48 (br s, 1 H, 8-H). 13C NMR (75 MHz, CDCl3): δ = 19.57 (C-3′), 45.25 (C-2), 53.24 (OMe), 56.72 (C-3), 112.87 (C-2′), 114.4 (C-5), 116.9 (C-7), 123.9 (C-9), 124.61 (C-8), 125.4 (C-6), 137.09 (C-10), 144.3 (C-1′), 155.3 (C=O). MS (EI, 70 eV): m/z (%) = 232 (100) [M+], 218 (8), 199 (14), 191 (40), 173 (21), 157 (18), 131 (40), 106 (7), 77 (7). Anal. Calcd for C13H16N2O2: C, 67.22; H, 6.94; N, 12.06. Found: C, 67.43; H, 7.01; N, 11.99.
Figure 4
13
Selected Data for 3a (Figure
[4]
):
R
f
0.59 (PE-EtOAc, 20:1). IR (ATR): 2980, 2958 (Me, CH2), 1702 (C=O), 1602, 1504 (C=C), 1438, 1375, 1344 (COO-), 1217, 1190, 1145, 1062 (=COC), 899, 733 cm-1. UV-Vis (EtOH): λmax (log ε) = 310 (2.49), 258 (2.41), 223 (2.35) nm. 1H NMR (300 MHz, CDCl3): δ = 1.17 (t, 3
J = 7.1 Hz, 3 H, 2′′-Me), 1.80 (s, 3 H, 3′-Me), 3.15-3.27 (over-lapped, 2 H, 1′′-CH2), 3.52 (dd, 2
J = 13.1 Hz, 3
J = 7.1 Hz, 1 H, 2-H), 3.76 (s, 3 H, OMe), 3.94 (t, 3
J = 7.1 Hz, 1 H, 3-H), 4.37 (dd, 2
J = 12.9 Hz, 3
J = 7.1 Hz, 1 H, 2-H), 4.81 (br s, 1 H, 2′-H), 4.93 (br s, 1 H, 2′-H), 6.62 (dd, 3
J = 8.1 Hz, 4
J = 1.1 Hz, 1 H, 5-H), 6.75 (ddd, 3
J = 7.8, 8.1 Hz, 4
J = 1.2 Hz, 1 H, 7-H), 7.06 (ddd, 3
J = 7.8, 8.1 Hz, 4
J = 1.2 Hz, 1 H, 6-H), 7.4 (br s, 1 H, 8-H). 13C NMR (75 MHz, CDCl3): δ = 11.76 (C-2′′), 19.60 (C-3′), 43.50 (C-1′′), 43.82 (C-2), 53.12 (OMe), 62.76 (C-3), 110.56 (C-2′), 113.5 (C-5), 115.1 (C-7), 124.3 (C-9), 124.7 (C-8), 125.8 (C-6), 137.9 (C-10), 143.06 (C-1′), 155.4 (C=O). MS (EI, 70 eV): m/z (%) = 260 (100) [M+], 245 (16), 231 (26), 219 (58), 213 (12), 190 (34), 171 (20), 159 (30), 131 (27), 119 (6), 92 (3), 77 (12), 41 (3), 28 (3). HRMS (EI): m/z [M+] calcd for C15H20N2O2: 260.1525; found: 260.1507.
14
Adam W.
Krebs O.
Chem. Rev.
2003,
103:
4131
15a
Söderberg BCG.
Curr. Org. Chem.
2000,
4:
727
15b
Cadogan JIG.
Q. Rev., Chem. Soc.
1968,
22:
222
16 Scheme
[3]
shows a mechanism involving a triplet nitrene. However, the occurrence of a singlet nitrene cannot be ruled out.
17a
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
17b
Appukkuttan P.
Van der Eycken E.
Dehaen W.
Synlett
2005,
127
18
General Procedure for the Synthesis of Alkenyl-1,2,3,4-tetrahydroquinoxalines under Microwave Conditions:
A solution of 1a (1 mmol), (EtO)3P (6 mmol) and toluene (3 mL) in a 10-mL septum-sealed reaction vial was irradiated with microwaves (DiscoverTM by CEM; 2450 MHz; 300 W; 200 °C). After removal of (EtO)3P and (EtO)3PO (10-1 mbar) the residue was taken up in EtOAc (25 mL) and washed with brine (3 × 20 mL). The residue obtained after drying over MgSO4 and after concentration in vacuo was purified by flash chromatography on silica gel (PE-EtOAc, 20:1).
19
Hoeke F.
Recl. Trav. Chim. Pays-Bas
1935,
54:
505
20
Mohri K.
Suzuki K.
Usui M.
Isobe K.
Tsuda Y.
Chem. Pharm. Bull.
1995,
43:
159
21
Greshock TJ.
Funk RL.
J. Am. Chem. Soc.
2002,
124:
754
22
Broggini G.
Garanti L.
Molteni G.
Zecchi G.
Synthesis
1996,
1076