Subscribe to RSS
DOI: 10.1055/s-2007-984884
Microwave-Assisted Reductive Cyclization of N-Allyl 2-Nitroanilines: A New Approach to Substituted 1,2,3,4-Tetrahydroquinoxalines
Publication History
Publication Date:
12 July 2007 (online)
Abstract
N-Allyl 2-nitrophenyl amines can be efficiently cyclized to yield alkenyl-1,2,3,4-tetrahydroquinoxalines in a single reaction step by means of a new microwave-assisted reductive domino process.
Key words
cyclizations - domino reactions - ene reactions - microwaves - tetrahydroquinoxalines
- 1
Torisu K.Kobayashi K.Iwahashi M.Nakai Y.Onoda T.Nagase T.Sugimoto I.Okada Y.Matsumoto R.Nanbu F.Ohuchida S.Nakai H.Toda M. Bioorg. Med. Chem. 2004, 12: 5361 - 2
Ohtake Y.Naito A.Hasegawa H.Kawano K.Morizono D.Taniguchi M.Tanaka Y.Matsukawa H.Naito K.Oguma T.Ezure Y.Tsuriya Y. Bioorg. Med. Chem. 1999, 7: 1247 -
3a
Barrows TH.Farina PR.Chrzanowski RL.Benkovic PA.Benkovic SJ. J. Am. Chem. Soc. 1976, 98: 3678 -
3b
Fisher GH.Schultz HP. J. Org. Chem. 1974, 39: 631 -
3c
Benkovic SJ.Barrows TH.Farina PR. J. Am. Chem. Soc. 1973, 95: 8414 -
4a
Pitts MR.Harrison JR.Moody CJ. J. Chem. Soc., Perkin Trans. 1 2001, 955 -
4b
Taylor EC.McKillop A. J. Am. Chem. Soc. 1965, 87: 1984 -
4c
Cavagnol JC.Wiselogle FY. J. Am. Chem. Soc. 1947, 69: 795 -
5a
Yang S.-C.Liu P.-C.Feng W.-H. Tetrahedron Lett. 2004, 45: 4951 -
5b
Yang S.-C.Shue Y.-J.Liu P.-C. Organometallics 2002, 21: 2013 -
5c
Massacret M.Lhoste P.Sinou D. Eur. J. Org. Chem. 1999, 129 - 6
Nair V.Dhanya R.Rajesh C.Bhadbhade MM.Manoj K. Org. Lett. 2004, 6: 4743 - 7
Bunce RA.Herron DM.Ackerman ML. J. Org. Chem. 2000, 65: 2847 -
8a
Bunce RA.Herron DM.Hale LY. J. Heterocycl. Chem. 2003, 40: 1031 -
8b
Rylander PN. Hydrogenation Methods Academic Press; New York: 1985. p.82-93 - 9
Tapia RA.Centella CR.Valderrama JA. Synth. Commun. 1999, 29: 2163 -
10a
LaBarbera DV.Skibo EB. Bioorg. Med. Chem. 2005, 13: 387 -
10b
Krchňák V.Smith J.Vagner J. Tetrahedron Lett. 2001, 42: 2443 - 11
Meriσor E.Conrad J.Klaiber I.Mika S.Beifuss U. Angew. Chem. Int. Ed. 2007, 46: 3353 - 14
Adam W.Krebs O. Chem. Rev. 2003, 103: 4131 -
15a
Söderberg BCG. Curr. Org. Chem. 2000, 4: 727 -
15b
Cadogan JIG. Q. Rev., Chem. Soc. 1968, 22: 222 -
17a
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 -
17b
Appukkuttan P.Van der Eycken E.Dehaen W. Synlett 2005, 127 - 19
Hoeke F. Recl. Trav. Chim. Pays-Bas 1935, 54: 505 - 20
Mohri K.Suzuki K.Usui M.Isobe K.Tsuda Y. Chem. Pharm. Bull. 1995, 43: 159 - 21
Greshock TJ.Funk RL. J. Am. Chem. Soc. 2002, 124: 754 - 22
Broggini G.Garanti L.Molteni G.Zecchi G. Synthesis 1996, 1076
References and Notes
Selected Data for 2a (Figure
[3]
):
R
f
0.40 (PE-EtOAc, 20:1). IR (ATR): 3376 (NH), 2952, 2854 (Me, CH2), 1691 (C=O), 1604, 1501 (C=C), 1435, 1382, 1372 (COO-), 1232, 1211, 1146, 1061 (=COC), 900, 760, 741 cm-1. UV-Vis (EtOH): λmax (log ε) = 307 (2.48), 253 (2.40), 220 (2.34) nm. 1H NMR (300 MHz, CDCl3): δ = 1.85 (s, 3 H, 3′-Me), 3.58 (dd, 2
J = 12.3 Hz, 3
J = 6.2 Hz, 1 H, 2-H), 3.81 (s, 3 H, OMe), 3.98 (dd, 3
J = 3.4, 6.2 Hz, 1 H, 3-H), 4.02 (dd, 2
J = 12.3 Hz, 3
J = 3.3 Hz, 1 H, 2-H), 4.98 (br s, 1 H, 2′-H), 5.05 (br s, 1 H, 2′-H), 6.65 (dd, 3
J = 8.0 Hz, 4
J = 1.4 Hz, 1 H, 5-H), 6.70 (ddd, 3
J = 7.4, 8.2 Hz, 4
J = 1.5 Hz, 1 H, 7-H), 6.97 (ddd, 3
J = 7.4, 7.9 Hz, 4
J = 1.4 Hz, 1 H, 6-H), 7.48 (br s, 1 H, 8-H). 13C NMR (75 MHz, CDCl3): δ = 19.57 (C-3′), 45.25 (C-2), 53.24 (OMe), 56.72 (C-3), 112.87 (C-2′), 114.4 (C-5), 116.9 (C-7), 123.9 (C-9), 124.61 (C-8), 125.4 (C-6), 137.09 (C-10), 144.3 (C-1′), 155.3 (C=O). MS (EI, 70 eV): m/z (%) = 232 (100) [M+], 218 (8), 199 (14), 191 (40), 173 (21), 157 (18), 131 (40), 106 (7), 77 (7). Anal. Calcd for C13H16N2O2: C, 67.22; H, 6.94; N, 12.06. Found: C, 67.43; H, 7.01; N, 11.99.
Selected Data for 3a (Figure
[4]
):
R
f
0.59 (PE-EtOAc, 20:1). IR (ATR): 2980, 2958 (Me, CH2), 1702 (C=O), 1602, 1504 (C=C), 1438, 1375, 1344 (COO-), 1217, 1190, 1145, 1062 (=COC), 899, 733 cm-1. UV-Vis (EtOH): λmax (log ε) = 310 (2.49), 258 (2.41), 223 (2.35) nm. 1H NMR (300 MHz, CDCl3): δ = 1.17 (t, 3
J = 7.1 Hz, 3 H, 2′′-Me), 1.80 (s, 3 H, 3′-Me), 3.15-3.27 (over-lapped, 2 H, 1′′-CH2), 3.52 (dd, 2
J = 13.1 Hz, 3
J = 7.1 Hz, 1 H, 2-H), 3.76 (s, 3 H, OMe), 3.94 (t, 3
J = 7.1 Hz, 1 H, 3-H), 4.37 (dd, 2
J = 12.9 Hz, 3
J = 7.1 Hz, 1 H, 2-H), 4.81 (br s, 1 H, 2′-H), 4.93 (br s, 1 H, 2′-H), 6.62 (dd, 3
J = 8.1 Hz, 4
J = 1.1 Hz, 1 H, 5-H), 6.75 (ddd, 3
J = 7.8, 8.1 Hz, 4
J = 1.2 Hz, 1 H, 7-H), 7.06 (ddd, 3
J = 7.8, 8.1 Hz, 4
J = 1.2 Hz, 1 H, 6-H), 7.4 (br s, 1 H, 8-H). 13C NMR (75 MHz, CDCl3): δ = 11.76 (C-2′′), 19.60 (C-3′), 43.50 (C-1′′), 43.82 (C-2), 53.12 (OMe), 62.76 (C-3), 110.56 (C-2′), 113.5 (C-5), 115.1 (C-7), 124.3 (C-9), 124.7 (C-8), 125.8 (C-6), 137.9 (C-10), 143.06 (C-1′), 155.4 (C=O). MS (EI, 70 eV): m/z (%) = 260 (100) [M+], 245 (16), 231 (26), 219 (58), 213 (12), 190 (34), 171 (20), 159 (30), 131 (27), 119 (6), 92 (3), 77 (12), 41 (3), 28 (3). HRMS (EI): m/z [M+] calcd for C15H20N2O2: 260.1525; found: 260.1507.
Scheme [3] shows a mechanism involving a triplet nitrene. However, the occurrence of a singlet nitrene cannot be ruled out.
18General Procedure for the Synthesis of Alkenyl-1,2,3,4-tetrahydroquinoxalines under Microwave Conditions: A solution of 1a (1 mmol), (EtO)3P (6 mmol) and toluene (3 mL) in a 10-mL septum-sealed reaction vial was irradiated with microwaves (DiscoverTM by CEM; 2450 MHz; 300 W; 200 °C). After removal of (EtO)3P and (EtO)3PO (10-1 mbar) the residue was taken up in EtOAc (25 mL) and washed with brine (3 × 20 mL). The residue obtained after drying over MgSO4 and after concentration in vacuo was purified by flash chromatography on silica gel (PE-EtOAc, 20:1).