References and Notes
Early reviews:
1a
Morgan AR.
Lee JS.
Pulleyblank DE.
Murray NL.
Evans DH.
Nucleic Acids Res.
1979,
7:
547
1b
Morgan AR.
Evans DH.
Lee JS.
Pulleyblank DE.
Nucleic Acids Res.
1979,
7:
571
2a
Gaugain B.
Barbet J.
Oberlin R.
Roques BP.
Le Pecq J.-B.
Biochemistry
1978,
17:
5071
2b
Gaugain B.
Barbet J.
Capelle N.
Roques BP.
Le Pecq J.-B.
Biochemistry
1978,
17:
5078
2c
Fechter EJ.
Olenyuk B.
Dervan PB.
Angew. Chem. Int. Ed.
2004,
43:
3591
3a
Brun AM.
Harriman A.
J. Am. Chem. Soc.
1992,
114:
3656
3b
Atherton SJ.
Beaumont PC.
J. Phys. Chem.
1995,
99:
12025
3c
Kelley SO.
Holmlin RE.
Stemp EDA.
Barton JK.
J. Am. Chem. Soc.
1997,
119:
9861
3d
Hall DB.
Kelley SO.
Barton JK.
Biochemistry
1998,
37:
15933
3e
Kononov AI.
Moroshkina EB.
Tkachenko NV.
Lemmetyinen H.
J. Phys. Chem. B
2001,
105:
535
3f
Henderson PT.
Boone E.
Schuster GB.
Helv. Chim. Acta
2002,
85:
135
3g
Li H.
Peng X.
Seela F.
Bioorg. Med. Chem. Lett.
2004,
14:
6031
4a
Fromherz P.
Rieger B.
J. Am. Chem. Soc.
1986,
108:
5361
4b
Atherton SJ.
Beaumont PC.
J. Phys. Chem.
1987,
91:
3993
4c
Dunn DA.
Lin VH.
Kochevar IE.
Biochemistry
1992,
31:
11620
5a
Kelley SO.
Barton JK.
Chem. Biol.
1998,
5:
413
5b
Wan C.
Fiebig T.
Kelley SO.
Treadway CR.
Barton JK.
Zewail AH.
Proc. Natl. Acad. Sci. U. S. A.
1999,
96:
6014
6a
Amann N.
Huber R.
Wagenknecht H.-A.
Angew. Chem. Int. Ed.
2004,
43:
1845
6b
Valis L.
Wang Q.
Raytchev M.
Buchvarov I.
Wagenknecht H.-A.
Fiebig T.
Proc. Natl. Acad. Sci. U. S. A.
2006,
103:
10192
7
Valis L.
Amann N.
Wagenknecht H.-A.
Org. Biomol. Chem.
2005,
3:
36
8a
Luedtke NW.
Liu Q.
Tor Y.
Chem. Eur. J.
2005,
11:
495
8b
Kubař T.
Hanus M.
Ryjáček F.
Hobza P.
Chem. Eur. J.
2006,
12:
280
9
Huber R.
Amann N.
Wagenknecht H.-A.
J. Org. Chem.
2004,
69:
744
10
Amann N.
Wagenknecht H.-A.
Tetrahedron Lett.
2003,
44:
1685
11
Fukui K.
Iwane K.
Shimidzu T.
Tanaka K.
Tetrahedron Lett.
1996,
37:
4983
12
Asanuma H.
Kashida H.
Liang X.
Komiyama M.
Chem. Commun.
2003,
1536
13
Kashida H.
Tanaka M.
Baba S.
Sakomoto T.
Kawai G.
Asanuma H.
Chem. Eur. J.
2006,
12:
777
14 The product 2 was co-evaporated three times with toluene and dried under high vacuum. Experimental data of 2: R
f
0.60 (CH2Cl2-MeOH, 10:2). 1H NMR (250 MHz, DMSO-d
6): δ = 8.81 (d, J = 8.5 Hz, 1 H, NH), 4.70 (m, 2 H, CHOH, OH), 3.74 (m, 1 H, CHNH), 3.67-3.71 (m, 1 H, OH), 3.53-3.60 (m, 1 H, CH
2OH), 3.46-3.48 (m, 1 H, CH
2OH), 0.85 (d, J = 8.3 Hz, 3 H, Me).
15 The product 3 was purified by flash chromatography (silica gel; CH2Cl2, 0.1% pyridine, 0-2% MeOH). Experimental data of 3: R
f
0.17 (CH2Cl2-MeOH, 100:0.5). 1H NMR (300 MHz, DMSO-d
6): δ = 9.25 (d, J = 8.2 Hz, 1 H, NH), 7.21-7.40, 6.86-6.89 (m, 13 H, DMT-H), 4.70 (m, 1 H, CHOH), 3.86-3.95 (m, 2 H, OH, NHCH), 3.73 (s, 6 H, OMe), 3.14-3.18 (dd, J = 3.6, 9.3 Hz, 1 H, CH
2ODMT), 2.94-2.99 (m, 1 H, CH
2ODMT), 0.93 (d, J = 6.0 Hz, 3 H, Me). 13C NMR (75 MHz, DMSO-d
6): δ = 157.9, 156.7, 156.3 (q, 2
J
CF = 36 Hz), 149.5, 144.8, 136.0, 135.6, 135.4, 129.6, 127.7, 127.5, 126.5, 123.8, 117.9, 114.1 (q, 1
J
CF = 288 Hz, CF3), 113.0, 85.1 (OCPh3), 64.7 (CHOH), 62.4 (CH2ODMT), 56.0 (NHCH), 54.9 (OMe), 20.0 (Me). MS (ESI): m/z (%) = 526.0(8) [M + Na]+, 303.3 (100) [DMT]+, 1028.9 (4) [2 × M + Na]+. C27H28F3NO5: 503.51.
16 The product 4 was co-evaporated twice with Et2O and dried under high vacuum. Experimental data of 4: R
f
0.24 (CH2Cl2-MeOH, 20:1). 1H NMR (300 MHz, DMSO-d
6): δ = 7.19-7.41, 6.83-6.92 (m, 13 H, DMT-H), 4.43 (m, 1 H, CHOH), 3.73 (s, 6 H, OMe), 3.63 (m, 1 H, OH), 2.99-3.04 (m, 1 H, NH2CH), 2.81-2.85 (m, 1 H, CH
2ODMT), 2.58 (m, 1 H, CH
2ODMT), 0.95 (d, J = 6.3 Hz, 3 H, Me). 13C NMR (75 MHz, DMSO-d
6): δ = 157.9, 145.1, 135.9, 135.8, 129.6, 127.7, 126.4, 113.0, 85.1 (OCPh3), 66.6 (CHOH), 65.1 (CH2ODMT), 56.5 (NH2CH), 54.9 (OMe), 20.1 (Me). MS (ESI): m/z (%) = 430.1 (16) [M + Na]+, 303.3 (100) [DMT]+, 815.0 (8) [2 × M + H]+. C25H29NO4: 407.50.
17
Azhayev AV.
Antopolsky ML.
Tetrahedron
2001,
57:
4977
18 The product 6 was purified by flash chromatography (silica gel; CH2Cl2-MeOH, 100:3, 0.1% pyridine; then CH2Cl2-MeOH, 10:3, 0.1% pyridine). Experimental data of 6: R
f
0.58 (CH2Cl2-MeOH, 20:3). 1H NMR (300 MHz, DMSO-d
6): δ = 10.67 (s, 1 H, NH, 3-alloc), 10.38 (s, 1 H, NH, 8-alloc), 9.08 (d, 3
J = 9.3 Hz, 1 H, H-1), 9.02 (d, 3J = 9.1 Hz, 1 H, H-10), 8.57 (s, 1 H, H-4), 8.26 (m, 1 H, H-9), 8.10 (dd, 3
J = 9.1 Hz, 4
J = 1.1 Hz, 1 H, H-2), 7.82-7.71 (m, 6 H, 6-Ph, H-7), 7.39-7.20 (m, 9 H, ArH, DMT-H), 6.88 (m, 4 H, ArH, DMT-H), 5.99 (m, 2 H, CH2=CH, 3- and 8-alloc), 5.37 (m, 1 H, CH
2=CH, trans, 3-alloc), 5.30 (m, 1 H, CH
2=CH, trans, 8-alloc), 5.25 (m, 1 H, CH
2=CH, cis, 3-alloc), 5.21 (m, 1 H, CH
2=CH, cis, 8-alloc), 4.67 (d, 3
J = 5.5 Hz, 2 H, OCH2, 3-alloc), 4.57 (d, 3
J = 5.5 Hz, 2 H, OCH2, 8-alloc), 4.73 (m, 1 H, CHOH), 4.63 (m, 2 H, H-1′), 3.72 (s, 6 H, OMe), 3.08 (m, 1 H, CH
2ODMT, NHCH), 2.80 (m, 2 H, H-3′), 2.58 (m, 1 H, CH
2ODMT), 2.09 (m, 2 H, H-2′), 0.93 (d, J = 6.3 Hz, 3 H, Me). MS (ESI): m/z (%) = 901.4 (100) [M]+, 599.3 (15) [M + H - DMT]+, 303.3 (33) [DMT]+, 468.3 (35). C55H57N4O8
+: 902.06.
19 The product 7 was purified by flash chromatography (silica gel; CH2Cl2-MeOH, 100:5, 0.1% pyridine; then EtOAc-MeOH-H2O, 6:2:2, 0.1% pyridine). Experimental data of 7: R
f
0.60 (EtOAc-MeOH-H2O, 6:2:2). 1H NMR (300 MHz, DMSO-d
6): δ = 8.67 (d, 3
J = 9.1 Hz, 1 H, H-1), 8.62 (d, 3
J = 9.3 Hz, 1 H, H-10), 7.67 (m, 5 H, 6-Ph), 7.51 (m, 2 H, H-9, H-4), 7.36-7.20 (m, 10 H, ArH, DMT-H, H-2), 6.86 (m, 4 H, ArH, DMT-H), 6.38 (s, 2 H, 3-NH2), 6.26 (s, 1 H, H-7), 5.96 (s, 2 H, 8-NH2), 4.50 (m, 3 H, H-1′, CHOH), 3.72 (s, 6 H, OMe), 3.27 (m, 1 H, NH2CH), 3.00 (m, 2 H, H-3′), 2.79 (m, 1 H, CH
2ODMT), 2.63 (m, 1 H, CH
2ODMT), 2.25 (m, 2 H, H-2′), 0.92 (d, J = 6.3 Hz, 3 H, Me). MS (ESI): m/z (%) = 733.4 (100) [M]+, 431.3 (13) [M + H - DMT]+, 303.3 (85) [DMT]+. C47H49N4O4
+: 733.92.
20 The product 8 was dried under high vacuum. Due to the high lability of the trifluoroacetyl groups the structure was confirmed only by MS. Experimental data of 8: MS (ESI): m/z (%) = 1021.3 (100) [M]+, 303.3 (38) [DMT]+. C53H46F9N4O7
+: 1021.94.
21 The product 9 was dried under high vacuum. Due to the observed high hydrolytic lability the structure was confirmed only by MS. Experimental data of 9: MS (ESI): m/z (%) = 1221.4 (100) [M]+, 303.3 (39) [DMT]+. C62H63F9N6O8P+: 1222.16.
22 An extended coupling time (1 h instead of 1.5 min for standard couplings), a higher phosphoramidite concentration (0.2 M instead of 0.067 M), and three coupling cycles interrupted by washing steps were necessary to achieve nearly quantitative coupling.
23 For the extinction coefficients of the oligonucleotides at 260 nm, see: Puglisi JD.
Tinoco I.
Meth. Enzymol.
1989,
180:
304
24 The extinction coefficients of phenanthridinium at 260 nm is 45.200 M-1cm-1.9
25 Experimental data of ssDNA1: ε260 = 200.700 M-1cm-1. MS (MALDI-TOF): m/z calcd for C181H225N64O98P16: 5359; found: 5359.
26 Experimental data of ssDNA2: ε260 = 200.700 M-1cm-1. MS (MALDI-TOF): m/z calcd for C182H228N64O98P16: 5374; found: 5374.
27a
Waring MJ.
J. Mol. Biol.
1965,
13:
269
27b
LePecq J.-B.
Paleotti C.
J. Mol. Biol.
1967,
27:
87
27c
Olmsted J.
Kearns DR.
Biochemistry
1977,
16:
3647
27d
Letsinger RL.
Schott ME.
J. Am. Chem. Soc.
1981,
103:
7394
28
Cosa G.
Foscaneanu K.-S.
McLean JRN.
McNamee JP.
Scaiano JC.
Photochem. Photobiol.
2001,
73:
585
29a
Wagner C.
Wagenknecht H.-A.
Org. Lett.
2006,
8:
4191
29b
Wanninger C.
Wagenknecht H.-A.
Synlett
2006,
2051
30
Dahl KS.
Pradi A.
Tinoco I.
Biochemistry
1982,
21:
2730
31
Lamos ML.
Turner DH.
Biochemistry
1985,
24:
2819
32 UV-VIS spectra and melting temperatures were measured on a Cary 100 (Varian) instrument. Fluorescence spectra were recorded on a Fluoromax-3 (Jobin-Yvon) equipment with a bandpass of 2 nm (excitation and emission) and correction for intensity and for Raman emission from the buffer solution. ESI-MS measurement was performed on a TSQ 7000 (Finnigan) instrument, MALDI-TOF MS on a Bruker Biflex III spectrometer (A = 50 mg/mL 3-hydroxypicolinic acid in MeCN-H2O, B = 50 mg/mL diammonium citrate, A:B = 9:1 for the matrix formation). C18-RP HPLC columns (300 Å) were from supplied by Supelco. The oligonucleotides were prepared on an Expedite 8909 DNA synthesizer (ABI) using CPG (1 µmol) and chemicals from ABI and Glen Research. The trityl-off oligonucleotides were cleaved and deprotected by treatment with concd NH4OH at 60 °C for 10 h (unmodified oligonucleotides), for 5.5 h (modified oligonucleotides), dried and purified by HPLC on RP-C5 (300 Å, Supelco) using the following conditions: A = NH4OAc buffer (50 mM), pH = 6.5; B = MeCN; gradient = 0-15% B (for the unmodified oligonucleotides) and 0-30% B (for the modified oligonucleotides) over 60 min. Duplexes were formed by heating to 90 °C (10 min), followed by slow cooling.