References and Notes
1a
Wuts PGM.
Greene’s Protecting Groups in Organic Synthesis
4th ed.:
John Wiley and Sons;
New York:
2007.
1b
Wang C.-C.
Lee J.-C.
Luo S.-Y.
Kulkarni SS.
Huang Y.-W.
Lee C.-C.
Chang K.-L.
Hung S.-C.
Nature (London)
2007,
446:
896
1c
Wang PG.
Nat. Chem. Biol.
2007,
3:
309
2a
Bhattacharjee SS.
Gorin PAJ.
Can. J. Chem.
1969,
47:
1195
2b
Garegg PJ.
Pure Appl. Chem.
1984,
56:
845
2c
Mikami T.
Asano H.
Mitsunobu O.
Chem. Lett.
1987,
2033
2d
de Ninno MP.
Etienne JB.
Duplantier KC.
Tetrahedron Lett.
1995,
36:
669
2e
Liptak A.
Imre J.
Hangi J.
Nanasi P.
Neszmelyi A.
Tetrahedron
1982,
38:
3721
2f
Shie C.-R.
Tzeng Z.-H.
Kulkarni SS.
Uang B.-J.
Hsu C.-Y.
Hung S.-C.
Angew. Chem. Int. Ed.
2005,
44:
1665 ; and references therein
3a
Hanessian S.
Plessas NR.
J. Org. Chem.
1969,
34:
1035
3b
Banaszek A.
Pakulski Z.
Zamojski A.
Carbohydr. Res.
1995,
279:
173
3c
Boivin J.
Monneret C.
Pais M.
Tetrahedron
1981,
37:
4219
3d
Hanessian S.
Adv. Chem. Ser.
1968,
74:
159
4
Fletcher HG.
Methods Carbohydr. Chem.
1963,
2:
307
5
Carman RM.
Kibby JJ.
Aust. J. Chem.
1976,
29:
1761
6
McGowan DA.
Berchtold GA.
J. Am. Chem. Soc.
1982,
104:
7036
7a
Kenne L.
Lindberg B.
Methods Carbohydr. Chem.
1980,
8:
317
7b
Russell RN.
Weigel TM.
Han O.
Liu H.-W.
Carbohydr. Res.
1990,
201:
95
8a
Albert R.
Dax K.
Pleschko R.
Stütz A.
Carbohydr. Res.
1985,
137:
282
8b
Yamanoi T.
Akiyama T.
Ishida E.
Abe H.
Amemiya M.
Inazu T.
Chem. Lett.
1989,
335
8c
Crimmins MT.
Hollis JWG.
Lever GJ.
Tetrahedron Lett.
1987,
28:
3647
8d
Morimoto Y.
Mikami A.
Kuwabe S.-I.
Shirahama H.
Tetrahedron Lett.
1991,
32:
2909
9
Han SY.
Joullié MM.
Petasis NA.
Bigorra J.
Cobera J.
Font J.
Ortuño RM.
Tetrahedron
1993,
49:
349
10a
Mukhopadhyay B.
Russell DA.
Field RA.
Carbohydr. Res.
2005,
340:
1075
10b
Mukhopadhyay B.
Tetrahedron Lett.
2006,
47:
4337
11a
Peat S.
Wiggins LF.
J. Chem. Soc.
1938,
1088
11b
Smith AB.
Hale KJ.
Tetrahedron Lett.
1989,
30:
1037
11c
Hartung WH.
Simonoff R.
Org. React.
1953,
7:
263
12a
Hann RM.
Richtmyer NK.
Diehl HW.
Hudson CS.
J. Am. Chem. Soc.
1950,
72:
561
12b
Smith M.
Rammler DH.
Goldberg IH.
Khorana HG.
J. Am. Chem. Soc.
1962,
84:
430
12c
Bonner TG.
Bourne EJ.
McNally S.
J. Chem. Soc.
1960,
2929
12d
Szarek WA.
Zamojski A.
Tiwari KN.
Ison ER.
Tetrahedron Lett.
1986,
27:
3827
12e
Park MH.
Takeda R.
Nakanishi K.
Tetrahedron Lett.
1987,
28:
3823
13a
Mairanovsky VG.
Angew. Chem., Int. Ed. Engl.
1976,
15:
281
13b
Agnihotri G.
Misra AK.
Tetrahetron Lett.
2006,
47:
3653
14a
Breton GW.
J. Org. Chem.
1997,
62:
8952
14b
Method for Preparation of NaHSO
4
·SiO
2
To a solution of 4.14 g (0.03 mol) of NaHSO4·H2O in 20 mL of H2O in a 100 mL round-bottomed flask was added 10.0 g of SiO2 (column chromatographic grade, 60 Å, 200-300 mesh). Then, H2O was removed under reduced pressure, and a free-flowing white solid was obtained. This reagent was further dried by placing the beaker in an oven maintained at 105 °C for at least 10 h prior to use.
15a
Mahender G.
Ramu R.
Ramesh C.
Das B.
Chem. Lett.
2003,
32:
734
15b
Ramesh C.
Ravindranath N.
Das B.
J. Org. Chem.
2003,
68:
7101
15c
Ramesh C.
Mahender G.
Ravindranath N.
Das B.
Tetrahedron Lett.
2003,
44:
1465
15d
Ravindranath N.
Ramesh C.
Reddy M.
Das B.
Adv. Synth. Catal.
2003,
345:
1207
15e
Das B.
Mahender G.
Kumar VS.
Chowdhury N.
Tetrahedron Lett.
2004,
45:
6709
15f
Das B.
Reddy KR.
Thirupathi P.
Tetrahedron Lett.
2006,
47:
5855
16
Ramu R.
Nath N.
Reddy M.
Das B.
Synth. Commun.
2004,
34:
3135
17a
Zolfigol MA.
Madrakian E.
Ghaemi E.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2001,
40:
1191
17b
Zolfigol MA.
Madrakian E.
Ghaemi E.
Molecules
2001,
6:
614
17c
Zolfigol MA.
Madrakian E.
Ghaemi E.
Kiani M.
Synth. Commun.
2000,
11:
2057
17d
Shirini F.
Zolfigol MA.
Torabi S.
Lett. Org. Chem.
2005,
2:
544
17e
Damavandi JA.
Zolfigol MA.
Karimi B.
Synth. Commun.
2001,
31:
3183
17f
Zolfigol MA.
Sadeghi MM.
Mohammadpoor-Baltork I.
Ghorbani Choghamarani A.
Taqian-nasab A.
Asian J. Chem.
2001,
13:
887
17g
Das B.
Venkateswarlu K.
Mahender G.
Mahender L.
Tetrahedron Lett.
2005,
46:
3041
17h
Das B.
Banerjee J.
Ravindranath N.
Tetrahedron
2004,
60:
8357
17i
Ramesh C.
Banerjee J.
Pal R.
Das B.
Adv. Synth. Catal.
2003,
345:
557
17j
Das B.
Banerjee J.
Chem. Lett.
2004,
33:
960
17k
Zhuang W.
Jørgensen KA.
Chem. Commun.
2002,
1336
18
General Procedure for the Formation of Benzylidene Acetals
To a stirred solution of the glycoside substrate (100 mg) and benzaldehyde dimethyl acetal (1.5 mmol) in MeCN (10 mL) was added activated NaHSO4·SiO2 (200 mg, dried at 105 °C for 10 h prior to use) at r.t. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with Et3N (0.2 mL). The catalyst was filtered off through a plug of Celite, and the filtrate was removed under reduced pressure to yield the product. Although the product was pure enough, analytical samples were prepared by passing the crude reaction product through a short column of silica gel using PE-EtOAc as eluent.
Compound 16: colorless solids, mp 108-109 °C. 1H NMR (500 MHz, CDCl3): δ = 8.10-8.08 (m, 2 H), 7.61-7.57 (m, 1 H), 7.49-7.44 (m, 4 H), 7.37-7.33 (m, 3 H), 6.02-5.94 (m, 1 H), 5.53 (s, 1 H), 5.39-5.35 (m, 1 H), 5.26-5.23 (m, 1 H), 4.98 (dd, J = 3.5, 10.5 Hz, 1 H), 4.52-4.46 (m, 3 H), 4.38-4.35 (dd, J = 2.0, 12.5 Hz, 1 H), 4.22-4.17 (m, 1 H), 4.13-4.08 (m, 2 H), 3.55 (d, J = 1.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 166.0, 137.5, 133.50, 133.45, 130.0, 129.3, 128.9, 128.5, 128.1, 126.1, 117.9, 101.0, 100.7, 72.8, 72.7, 70.3, 68.9, 66.4, 60.6. LRMS-FAB: m/z calcd for C23H27N4O6 [M + NH4
+]: 455; found: 455. Anal. Calcd for C23H23N3O6: 63.15; H, 5.30; N, 9.61, Found: C, 62.80; H, 5.47; N, 9.57.
19
Rehnberg N.
Magnusson G.
J. Org. Chem.
1990,
55:
5467
20
Cumpstey I.
Chayajarus K.
Fairbanks AJ.
Redgrave AJ.
Seward CMP.
Tetrahedron: Asymmetry
2004,
15:
3207
21
General Procedure for the Cleavage of Benzylidene Acetals
To a stirred solution of the 4,6-O-benzylidene-glycopyrano-side (100 mg) in a mixed solvent of CH2Cl2 and MeOH (or i-PrOH; v/v 4:1, 10 mL) was added activated NaHSO4·SiO2 (200 mg, dried at 105 °C for 10 h prior to use) at r.t. After completion of the reaction (monitored by TLC), the mixture was filtered through a Celite bed and the filtrate was con-centrated. The residue was purified by column chromatog-raphy on silica gel using PE-EtOAc as eluent to afford the pure product. If the acid-sensitive functional groups exist, it is necessary to quench the reaction with Et3N (0.2 mL) after completion of the reaction.
Compound 19: white solids, mp 135-136 °C. 1H NMR (300 MHz, CDCl3): δ = 7.45 (d, J = 8.1 Hz, 2 H), 7.35 (d, J = 8.7 Hz, 2 H), 7.27-7.24 (m, 2 H), 7.10 (d, J = 8.1 Hz, 2 H), 6.91-6.85 (m, 4 H), 4.76 (d, J = 10.2 Hz, 1 H), 4.65 (d, J = 12.6 Hz, 3 H), 4.56 (d, J = 12.9 Hz, 1 H), 3.99-3.93 (m, 2 H), 3.81 (s, 3 H), 3.80 (s, 3 H), 3.79-3.72 (m, 1 H), 3.67 (t, J = 9.3 Hz, 1 H), 3.54 (dd, J = 3.3, 9.3 Hz, 1 H), 3.46-3.44 (m, 1 H), 2.58 (br s, 1 H), 2.32 (s, 3 H), 2.01 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 137.8, 132.6, 130.3, 129.9, 129.7, 129.6, 113.9, 113.8, 87.8, 82.1, 77.9, 75.4, 72.0, 69.4, 67.4, 62.8, 55.3. 21.1. ESI-HRMS: m/z calcd for C29H35O7S [M + H+]: 527.2098; found: 527.2104.
22
Fan Q.-H.
Ni N.-T.
Li Q.
Zhang L.-H.
Ye X.-S.
Org. Lett.
2006,
8:
1007
23
Marco-Contelles J.
Molina MT.
Anjum S.
Chem. Rev.
2004,
104:
2857
24
Larock RC.
Comprehensive Organic Transformations
2rd ed.:
John Wiley and Sons;
New York:
1999.
p.1019