RSS-Feed abonnieren
DOI: 10.1055/s-2007-985584
Practical Preparation of Diosphenols by Ring Opening of α,β-Epoxyketones Catalyzed by Silica Gel Supported Acids
Publikationsverlauf
Publikationsdatum:
14. August 2007 (online)

Abstract
The mixed acid (H2SO4-HOAc) catalyzed ring opening of α,β-epoxyketone was the most used method for the preparation of diosphenols, but it seriously suffered from poor yields and tedious workup operations. By using silica gel supported mixed acid (H2SO4-HOAc), a variety of α,β-epoxyketones were converted into the corresponding diosphenols in unprecedented high yields within a few minutes.
Key words
supported catalysis - regioselective - peroxides - ring opening - green chemistry
- For selected references, see:
-
1a
Murakami N.Sugimoto M.Kawanishi M.Tamura S.Kim H.-S.Begum K.Wataya Y.Kobayashi M. J. Med. Chem. 2003, 46: 638 -
1b
Li A.She X.Zhang J.Wu T.Pan X. Tetrahedron 2003, 59: 5737 -
1c
Pena-Cabrera E.Liebeskind LS. J. Org. Chem. 2002, 67: 1689 -
1d
Ottinger H.Soldo T.Hofmann T. J. Agric. Food Chem. 2001, 49: 5383 -
1e
Yin J.Liebeskind LS. J. Org. Chem. 1998, 63: 5726 -
1f
Decosterd LA.Ian CP.Gustafson KR.Cardellina JH.McMahon JB.Cragg GM.Murata Y.Pannell LK.Steiner JR.Clardy J.Boyd MR. J. Am. Chem. Soc. 1993, 115: 6673 -
1g
Sasaki M.Murae T.Takahashi T. J. Org. Chem. 1990, 55: 528 -
1h
Kupchan SM.Britton RW.Sigel CW. J. Org. Chem. 1973, 38: 178 - For selected references, see:
-
2a
Cepa MMDS.Tavares da Silva EJ.Correia-da-Silva G.Roleira FMF.Teixeira NAA. J. Med. Chem. 2005, 48: 6379 -
2b
Solorio CR.Rodriguez-Cendejas CG.Pena-Cabrera E. ARKIVOC 2003, (xi): 172 -
2c
Ciobanu LC.Boivin RP.Luu-The V.Poirier D. Eur. J. Med. Chem. 2001, 36: 659 -
2d
Li X.Singh SM.Cote J.Laplante S.Veilleux R.Labrie F. J. Med. Chem. 1995, 38: 1456 -
2e
Brodie AMJ. Steroid Biochem. Mol. Biol. 1994, 28: 788 - For selected references, see:
-
3a
Paju A.Laos M.Jogi A.Paeri M.Jaeaelaid R.Pehk T.Kanger T.Lopp M. Tetrahedron Lett. 2006, 47: 4491 -
3b
Wu J.Li H.Sun L.Dai W.-M. Tetrahedron 2006, 62: 4643 -
3c
Svennebring A.Garg N.Nilsson P.Hallberg A.Larhed M. J. Org. Chem. 2005, 70: 4720 -
3d
Loebel J.Herdtweck E.Bach T. Eur. J. Org. Chem. 2003, 4146 -
3e
Martinez R.Jimenez-Vazquez HA.Delgado F.Tamariz J. Tetrahedron 2003, 59: 481 -
3f
Trost BM.Schroeder GM. J. Am. Chem. Soc. 2000, 122: 3785 -
3g
Utaka M.Kuriki H.Sakai T.Takeda A. J. Org. Chem. 1986, 51: 935 -
3h
Koreeda M.Luengo JI. J. Am. Chem. Soc. 1985, 107: 5572 -
3i
Ponaras AA. J. Org. Chem. 1983, 48: 3866 -
3j
Dauben WG.Ponaras AA.Chollet A. J. Org. Chem. 1980, 45: 4413 -
4a
de Frutos O.Atienza C.Echavarren AM. Eur. J. Org. Chem. 2001, 163 -
4b
Ponaras AA.Meah MY. Tetrahedron Lett. 2000, 41: 9031 -
4c
Paquette LA.Wang TZ.Vo NH. J. Am. Chem. Soc. 1993, 115: 1676 -
4d
Nagasawa K.Matauda N.Noguchi Y.Yamanashi M.Zako Y.Shimizu I. J. Org. Chem. 1993, 58: 1483 -
4e
Becker D.Birnbaum D. J. Org. Chem. 1980, 45: 570 -
5a
Harrity JPA.Kerr WJ.Middlemiss D.Scott JS. J. Organomet. Chem. 1997, 532: 219 -
5b
Verma AK.Gupta R.Yadav MR.Sharma N.Jindal DP. Indian J. Chem., Sect. B 1995, 34: 215 -
5c
Haase-Held M.Hatzis JM. J. Chem. Soc., Perkin Trans. 1 1993, 2907 -
5d
Lesuisse D.Gourvest JF.Hartmann C.Benslimane TO.Philibert D.Vevert JP. J. Med. Chem. 1992, 35: 1588 -
5e
Lesuisse D.Gourvest JF.Hartmann C.Benslimane TO.Philibert D.Vevert JP. J. Med. Chem. 1992, 35: 1588 -
5f
Mastalerz H.Morand P. J. Org. Chem. 1981, 46: 1206 -
5g
Jennings BH.Bengtson JM. Steroids 1978, 31: 49 -
6a
Tavares da Silva EJ.Roleira FMF.Sáe Melo ML.Campos Neves AS.Paixao JA.de Almeida MJ.Silva MR.Andrade LCR. Steroids 2002, 67: 311 -
6b
Constantino MG.Lacerda JV.Aragao V. Molecular 2001, 6: 770 -
6c
Sankararaman S.Nesakumar J. J. Chem. Soc., Perkin Trans. 1 1999, 3173 -
6d
Campos Neves AS.Sáe Melo ML.Moreno MJSM.Tavares da Silva EJ.Salvado JAR.da Costa SP.Martins RMLM. Tetrahedron 1999, 55: 3255 -
6e
Bednarski PJ.Nelson SD. J. Med. Chem. 1989, 32: 203 -
6f
Klix RC.Bach RD. J. Org. Chem. 1987, 52: 580 -
6g
Schultz AG.Lucci RD.Napier JJ.Kinoshita H.Ravichandran R.Shannon P.Yee YK. J. Org. Chem. 1985, 50: 217 - 7
Sleman S.Eartham JF. Quart. Rev. 1960, 14: 221 -
8a
Reusch WR.LeMahieu R. J. Org. Chem. 1963, 28: 2443 -
8b
Kawada K.Kim M.Watt DS. Tetrahedron Lett. 1989, 30: 5985 -
9a
Cao L.Sun J.Wang X.Zhu R.Shi H.Hu Y. Tetrahedron 2007, 63: 5036 -
9b
Wang C.Rath NP.Covey DF. Tetrahedron Lett. 2006, 47: 7837 -
9c
Wang C.Jiang X.Shi H.Lu J.Hu Y.Hu H. J. Org. Chem. 2003, 68: 4579 -
9d
Jiang X.Wang C.Hu Y.Hu H.Covey DF. J. Org. Chem. 2000, 65: 3555 - 10
Elings JA.Lempers HB.Sheldon RA. Eur. J. Org. Chem. 2000, 1905
References and Notes
Typical Procedure for the Preparation of 3d: The mixture of substrate 4d (1.0 g), the mixed acid [2.0 mL, H2SO4-HOAc (1:2 wt/wt)] and silica gel (8.0 g) in THF (10 mL) was rotaevaporated in vacuum (<15 mmHg) at 70 °C. After the solvent had been removed, the reaction was continued for another 3 min. The resultant non-stick solid was then washed with CH2Cl2 and the combined organic layers were washed with aq Na2CO3, brine and dried over Na2SO4. Removal of the solvent yielded the crude product, which was purified by chromatography to give the pure product 3d (0.81 g, 81%) as white crystals; mp 88-90 °C (EtOAc-PE); [α]D 20 +277.86° (c = 1.20, CHCl3). IR: 3386, 2958, 2937, 2871, 1739, 1661 cm-1. 1H NMR: δ = 6.17 (s, 1 H), 3.02-3.06 (m, 1 H), 2.61-2.75 (m, 4 H), 2.39-2.46 (m, 1 H), 2.07-2.09 (m, 1 H), 1.90-1.92 (m, 1 H), 1.32 (s, 3 H). 13C NMR: δ = 217.4, 193.7, 141.3, 137.2, 48.4, 35.7, 31.7, 29.6, 21.1, 20.7. MS: m/z (%) = 180 (100), 152 (21), 137 (19), 110 (19), 109 (35), 95 (18), 81 (31), 67 (34), 55 (23), 39 (28). Anal. Calcd for C10H12O3: C, 66.65; H, 6.71. Found: C, 66.58; H, 6.70. The same proce-dure was efficiently used to convert the substrates 4a-j into the corresponding products 3a-j (see Table [2] ). Products 3a-j are known compounds and their 1H NMR and 13C NMR spectra are available upon request from the authors.