Aktuelle Neurologie 2008; 35(4): 185-191
DOI: 10.1055/s-2007-986395
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Immunpathogenese und Therapie inflammatorischer Myopathien

Immunopathogenesis and Therapy of Inflammatory MyopathiesH.  Wiendl1 , R.  Hohlfeld2
  • 1Neurologische Klinik der Universität Würzburg
  • 2Institut für Neuroimmunologie, Klinikum der Universität München-Großhadern
Further Information

Publication History

Publication Date:
05 May 2008 (online)

Zusammenfassung

Die gegenwärtige Unterteilung sowie die pathogenetischen Konzepte der drei Hauptentitäten inflammatorischer Myopathien, der Polymyositis (PM), der Dermatomyositis (DM) sowie der Einschlusskörpermyositis (IBM) basieren auf einer Kombination von klinischen, histologischen und immunpathologischen Befunden. Die klassischen Pathogenesekonzepte nehmen an, dass bei der Polymyositis und bei der Einschlusskörpermyositis eine immunvermittelte Schädigung durch zytotoxische T-Zellen maßgeblich beteiligt ist. Bei der Dermatomyositis scheinen humoral vermittelte Schädigungen der Kapillaren bzw. kleinen Gefäße ursächlich. Die pathogenetische Bedeutung klonal expandierter CD8-T-Zellen in der Pathogenese der Polymyositis sowie der Einschlusskörpermyositis ist durch verschiedene Untersuchungen in den letzten Jahren gut validiert. Ebenso zeigen neuere Studien die aktive Rolle des Muskels in der direkten Interaktion mit Immunzellen und identifizieren potenzielle therapeutische Zielstrukturen für die Immunintervention. Neuere Erkenntnisse der letzten Jahre, insbesondere zur Pathogenese der Dermatomyositis, erweitern die bislang gültigen hypothetischen Pathogeneseszenarien. Während die Polymyositis und die Dermatomyositis mithilfe konventioneller immunsuppressiver Strategien (v. a. Kortikosteroide, Azathioprin) in den meisten Fällen gut kontrollierbar sind, ist die Mehrheit der Einschlusskörpermyositisfälle immuntherapeutisch kaum modulierbar. Neuere pathogenetische Erkenntnisse haben auch klare Implikationen hinsichtlich der Möglichkeiten immunselektiver Interventionen. Der gegenwärtige Stand zur Pathogenese bzw. Therapie autoimmuner entzündlicher Myopathien wird dargestellt.

Abstract

Inflammatory myopathies are currently subdivided into three main entities: polymyositis (PM), dermatomyositis (DM) and inclusion body myositis (IBM). This categorisation is based on a combination of clinical, histological and immunopathological characteristics. The classical pathogenic concepts assume that an immune-mediated damage by cytotoxic T cells plays a major role in polymyositis and in inclusion body myositis. In dermatomyositis, humoral components directed against capillaries or small vessels are considered to be instrumental. The pathogenetic importance of clonally expanded CD8 T cells in the pathogenesis of polymyositis as well as inclusion body myositis has been well validated by various studies over the last years. Furthermore, novel studies show the active role of the muscle in the direct interaction with immune cells and help to identify the potential therapeutic target structures for immune intervention. Recent years have brought forth novel findings, particularly concerning the pathogenesis of dermatomyositis, which broaden the hypothetical scenaries for pathogenesis that have been valid so far. While polymyositis and dermatomyositis are well controllable in most cases by means of conventional immunosuppressive strategies (above all, corticosteroids, azathioprine), the disease course of most cases of inclusion body myositis can hardly be modulated. Novel pathogenetic findings also have clear implications with regard to the possibilities of immunoselective interventions. This paper surveys the current status of the pathogenesis of and/or therapy for autoimmune inflammatory myopathies.

Literatur

  • 1 Engel G A, Hohlfeld R. The polymyositis and dermatomyositis syndromes. In: Engel GA, Franzini-Armstrong C (eds) Myositis, Third Edition. New York; McGraw-Hill 2004 2: 1321-1367
  • 2 Dalakas M C, Hohlfeld R. Polymyositis and dermatomyositis.  Lancet. 2003;  362 971-982
  • 3 Hilton-Jones D. Inflammatory muscle diseases.  Curr Opin Neurol. 2001;  14 591-596
  • 4 Dalakas M C. Sporadic inclusion body myositis - diagnosis, pathogenesis and therapeutic strategies.  Nat Clin Pract Neurol. 2006;  2 437-447
  • 5 Greenberg S A. Proposed immunologic models of the inflammatory myopathies and potential therapeutic implications.  Neurology. 2007;  69 2008-2019
  • 6 Hohlfeld R, Dornmair K. Revisiting the immunopathogenesis of the inflammatory myopathies.  Neurology. 2007;  69 1966-1967
  • 7 Wiendl H, Hohlfeld R, Kieseier B C. Immunobiology of muscle: advances in understanding an immunological microenvironment.  Trends Immunol. 2005;  26 373-380
  • 8 Wiendl H, Hohlfeld R, Kieseier B C. Muscle-derived positive and negative regulators of the immune response.  Curr Opin Rheumatol. 2005;  17 714-719
  • 9 Arahata K, Engel A G. Monoclonal antibody analysis of mononuclear cells in myopathies. I: Quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells.  Ann Neurol. 1984;  16 193-208
  • 10 Karpati G, Pouliot Y, Carpenter S. Expression of immunoreactive major histocompatibility complex products in human skeletal muscles.  Ann Neurol. 1988;  23 64-72
  • 11 Emslie-Smith A M, Arahata K, Engel A G. Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies.  Hum Pathol. 1989;  20 224-231
  • 12 Ikezoe K, Ohshima S, Osoegawa M. et al . Expression of granulysin in polymyositis and inclusion-body myositis.  J Neurol Neurosurg Psychiatry. 2006;  77 1187-1190
  • 13 Goebels N, Michaelis D, Engelhardt M. et al . Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis.  J Clin Invest. 1996;  97 2905-2910
  • 14 Hofbauer M, Wiesener S, Babbe H. et al . Clonal tracking of autoaggressive T cells in polymyositis by combining laser microdissection, single-cell PCR, and CDR3-spectratype analysis.  Proc Natl Acad Sci U S A. 2003;  100 4090-4095
  • 15 Benveniste O, Chérin P, Maisonobe T. et al . Severe perturbations of the blood T cell repertoire in polymyositis, but not dermatomyositis patients.  J Immunol. 2001;  167 3521-3529
  • 16 Nishio J, Suzuki M, Miyasaka N, Kohsaka H. Clonal biases of peripheral CD8 T cell repertoire directly reflect local inflammation in polymyositis.  J Immunol. 2001;  167 4051-4058
  • 17 Amemiya K, Granger R P, Dalakas M C. Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time. Studies in repeated muscle biopsies.  Brain. 2000;  123 2030-2039
  • 18 Dimitri D, Benveniste O, Dubourg O. et al . Shared blood and muscle CD8+ T-cell expansions in inclusion body myositis.  Brain. 2006;  129 986-995
  • 19 Benveniste O, Herson S, Salomon B. et al . Long-term persistence of clonally expanded T cells in patients with polymyositis.  Ann Neurol. 2004;  56 867-872
  • 20 Salajegheh M, Rakocevic G, Raju R. et al . T cell receptor profiling in muscle and blood lymphocytes in sporadic inclusion body myositis.  Neurology. 2007;  69 1672-1679
  • 21 Seitz S, Schneider C K, Malotka J. et al . Reconstitution of paired T cell receptor alpha- and beta-chains from microdissected single cells of human inflammatory tissues.  Proc Natl Acad Sci U S A. 2006;  103 12057-12062
  • 22 Wiendl H, Mitsdoerffer M, Schneider D. et al . Muscle fibres and cultured muscle cells express the B7.1/2-related inducible co-stimulatory molecule, ICOSL: implications for the pathogenesis of inflammatory myopathies.  Brain. 2003;  126 1026-1035
  • 23 Schmidt J, Rakocevic G, Raju R, Dalakas M C. Upregulated inducible co-stimulator (ICOS) and ICOS-ligand in inclusion body myositis muscle: significance for CD8+ T cell cytotoxicity.  Brain. 2004;  127 1182-1190
  • 24 Wiendl H, Mitsdoerffer M, Schneider D. et al . Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies.  FASEB J. 2003;  17 1892-1894
  • 25 Tournadre A, Miossec P. Cytokine response in inflammatory myopathies.  Curr Rheumatol Rep. 2007;  9 286-290
  • 26 Schreiner B, Voss J, Wischhusen J. et al . Expression of toll-like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates IL-8 release and up-regulation of NKG2D-ligands.  FASEB J. 2006;  20 118-120
  • 27 Kissel J T, Mendell J R, Rammohan K W. Microvascular deposition of complement membrane attack complex in dermatomyositis.  N Engl J Med. 1986;  314 329-334
  • 28 Emslie-Smith A M, Engel A G. Microvascular changes in early and advanced dermatomyositis: a quantitative study.  Ann Neurol. 1990;  27 343-356
  • 29 Dalakas M C, Illa I. Common variable immunodeficiency and inclusion body myositis: a distinct myopathy mediated by natural killer cells.  Ann Neurol. 1995;  37 806-810
  • 30 Dalakas M C. Mechanisms of disease: signaling pathways and immunobiology of inflammatory myopathies.  Nat Clin Pract Rheumatol. 2006;  2 219-227
  • 31 Greenberg S A, Pinkus J L, Pinkus G S. et al . Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis.  Ann Neurol. 2005;  57 664-678
  • 32 Tezak Z, Hoffman E P, Lutz J L. et al . Gene expression profiling in DQA1*0501+ children with untreated dermatomyositis: a novel model of pathogenesis.  J Immunol. 2002;  168 4154-4163
  • 33 Raju R, Vasconcelos O, Granger R, Dalakas M C. Expression of IFN-gamma-inducible chemokines in inclusion body myositis.  J Neuroimmunol. 2003;  141 125-131
  • 34 Nagaraju K, Rider L G, Fan C. et al . Endothelial cell activation and neovascularization are prominent in dermatomyositis.  J Autoimmune Dis. 2006;  3 2
  • 35 Bradshaw E M, Orihuela A, McArdel S L. et al . A local antigen-driven humoral response is present in the inflammatory myopathies.  J Immunol. 2007;  178 547-556
  • 36 Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease.  Nat Rev Immunol. 2006;  6 823-835
  • 37 Hengstman G J. Advances in the immunopathophysiology of the idiopathic inflammatory myopathies: not as simple as suspected.  Curr Rheumatol Rep. 2007;  9 280-285
  • 38 Walter M C, Pongratz D. Myositiden. In: Brandt, Dichgans Diener (Hrsg) Therapie und Verlauf neurologischer Erkrankungen, 5. Auflage. Stuttgart; Kohlhammer 2007 J8: 1343-1362
  • 39 Traufeller K, Zierz S. Therapie der Polymyositis, Dermatomyositis und Einschlusskörperchenmyositis.  Akt Neurol. 2005;  32 217-222
  • 40 Walter M C, Lochmüller H, Schlotter B. et al . [New insights in pathogenesis and therapy of sporadic inclusion body myositis (s-IBM)].  Nervenarzt. 2001;  72 117-121
  • 41 The Muscle Study Group . Randomized pilot trial of high-dose betaINF-1a with inclusion body myositis.  Neurology. 2004;  63 718-720
  • 42 The Muscle Study Group . Randomized pilot trial of high-dose betaINF-1a (Avonex) with inclusion body myositis.  Neurology. 2001;  57 1566-1570
  • 43 Sekul E A, Chow C, Dalakas M C. Magnetic resonance imaging of the forearm as a diagnostic aid in patients with sporadic inclusion body myositis.  Neurology. 1997;  48 863-866
  • 44 Dalakas M C, Koffman B, Fujii M. et al . A controlled study of intravenous immunoglobulin combined with prednisone in the treatment of IBM.  Neurology. 2001;  56 323-327
  • 45 Badrising U A, Maat-Schieman M L, Ferrari M D. et al . Comparison of weakness progression in inclusion body myositis during treatment with methotrexate or placebo.  Ann Neurol. 2002;  51 369-372
  • 46 Walter M C, Lochmüller H, Toepfer M. et al . High-dose immunoglobulin therapy in sporadic inclusion body myositis: a double-blind, placebo-controlled study.  J Neurol. 2000;  247 22-28
  • 47 ClinicalTrials.gov. Infliximab to treat dermatomyositis and polymyositis. Available at http://www.clinicaltrials.gov/ct/show/NCT00033891
  • 48 Mok C C, Ho L Y, To C H. Rituximab for refractory polymyositis: an open-label prospective study.  J Rheumatol. 2007;  34 1864-1868
  • 49 Cooper M A, Willingham D L, Brown D E. et al . Rituximab for the treatment of juvenile dermatomyositis: a report of four pediatric patients.  Arthritis Rheum. 2007;  56 3107-3111
  • 50 Chung L, Genovese M C, Fiorentino D F. A pilot trial of rituximab in the treatment of patients with dermatomyositis.  Arch Dermatol. 2007;  143 763-767
  • 51 Dinh H V, McCormack C, Hall S, Prince H M. Rituximab for the treatment of the skin manifestations of dermatomyositis: a report of 3 cases.  J Am Acad Dermatol. 2007;  56 148-153
  • 52 Ferrer E, Moral M A. Spotlight on rituximab as a new therapeutic option for dermatomyositis and thrombotic thrombocytopenic purpura.  Drug News Perspect. 2006;  19 482-484
  • 53 Brulhart L, Waldburger J M, Gabay C. Rituximab in the treatment of antisynthetase syndrome.  Ann Rheum Dis. 2006;  65 974-975
  • 54 Chiappetta N, Steier J, Gruber B. Rituximab in the treatment of refractory dermatomyositis.  Journal of clinical rheumatology: practical reports on rheumatic & musculoskeletal diseases. 2005;  11 264-266
  • 55 Lambotte O, Kotb R, Maigne G. et al . Efficacy of rituximab in refractory polymyositis.  J Rheumatol. 2005;  32 1369-1370
  • 56 Levine T D. Rituximab in the treatment of dermatomyositis: an open-label pilot study.  Arthritis Rheum. 2005;  52 601-607
  • 57 Clinical Trials.gov. Rituximab for the treatment of refractory adult and juvenile dermatomyositis and adult Polymyositis. Available at http://www.clinicaltrials.gov/ct/show/NCT00106184
  • 58 Clinical Trials.gov. Alemtuzumab to Treat Sporadic Inclusion Body Myositis. Available at http://www.clinicaltrials.gov/ct/show/NCT00079768.therapy
  • 59 Clinical Trials.gov. Safety and tolerability of MEDI-545 in patients who have systemic lupus erythematosus (SLE). Available at http://www.clinicaltrials.gov/ct/show/NCT00299819
  • 60 Figdor C G, de Vries I J, Leserhuis W J, Melief C J. Dendritic cell immunotherapy: mapping the way.  Nat Med. 2004;  10 475-480

Prof. Dr. Heinz Wiendl

Neurologische Klinik der Universität Würzburg

Josef-Schneider-Str. 11

97080 Würzburg

Email: heinz.wiendl@klinik.uni-wuerzburg.de