Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2007(21): 3411-3420
DOI: 10.1055/s-2007-990835
DOI: 10.1055/s-2007-990835
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart · New York
Electrochemistry and Umpolung Reactions: New Tools for Solving Synthetic Challenges of Structure and Location
Further Information
Received
3 September 2007
Publication Date:
16 October 2007 (online)
Publication History
Publication Date:
16 October 2007 (online)
Abstract
Electrochemistry is a powerful tool for initiating new umpolung reactions. In this paper, two examples are provided. One demonstrates the use of electrochemistry for reversing the polarity of known functional groups and triggering carbon-carbon bond formation. The second demonstrates the use of electrochemistry for reversing the polarity of a chemical reagent, a technique that allows for spatially locating synthetic transformations on addressable chips.
Key words
electron transfer - umpolung - cyclizations - site-selective reactions - Heck reactions
- For a recent review see:
-
1a
Sperry JB.Wright DL. Chem. Soc. Rev. 2006, 35: 605 - For an extensive discussion of electrochemistry as a synthetic tool see:
-
1b
Organic Electrochemistry
4th ed.:
Lund H.Hammerich O. Dekker; New York: 2001. -
2a
Nielsen MF.Utley JHP. Reductive Coupling In Organic Electrochemistry 4th ed.:Lund H.Hammerich O. Dekker; New York: 2001. -
2b
Little RD.Schwaebe MK. Top. Curr. Chem. 1996, 185: 1-48 -
2c For summaries of recent work see ref. 1a and:
Little RD.Moeller KD. Electrochem. Soc. Interface 2002, 11: 36 - For a reviews see:
-
3a
Moeller KD. Tetrahedron 2000, 56: 9527 -
3b
Moeller KD. Top. Curr. Chem. 1996, 185: 49-86 ; in addition to ref. 1a above - For a review of early work see ref. 3a. For recent work see:
-
4a
Huang Y.Moeller KD. Tetrahedron 2006, 62: 6536 -
4b
Brandt JD.Moeller KD. Org. Lett. 2005, 7: 3553 ; and references cited therein - 5
Mihelcic J.Moeller KD. J. Am. Chem. Soc. 2004, 126: 9106 - 6
Frey DA.Wu N.Moeller KD. Tetrahedron Lett. 1996, 37: 8317 - 7
Wright DL.Whitehead CR.Sessions EH.Ghiviriga I.Frey DA. Org. Lett. 1999, 1: 1535 -
8a
Hughes CC.Miller AK.Trauner D. Org. Lett. 2005, 7: 3425 -
8b
Miller AK.Hughes CC.Kennedy-Smith JJ.Gradl SN.Trauner D. J. Am. Chem. Soc. 2006, 128: 17057 - 9
Frey DA.Reddy SHK.Wu N.Moeller KD. J. Org. Chem. 1999, 64: 2805 -
10a
Sutterer AC.Moeller KD. J. Am. Chem. Soc. 2000, 122: 5636 -
10b
Duan S.Moeller KD. Org. Lett. 2001, 3: 2685 -
10c
Duan S.Moeller KD. J. Am. Chem. Soc. 2002, 124: 9368 -
10d
Liu B.Duan S.Sutterer AC.Moeller KD. J. Am. Chem. Soc. 2002, 124: 10101 -
11a
Organic Electrochemistry
4th ed.:
Lund H.Hammerich O. Dekker; New York: 2001. p.44 -
11b
Yoshida KI. Electrooxidation in Organic Chemistry: The Role of Cation Radical Intermediates John Wiley & Sons; New York: 1984. p.13 -
11c
Fry AJ. Synthetic Organic Electrochemistry 2nd ed.: John Wiley & Sons; New York: 1989. p.37 - 12 For a description of the ‘1 K chips’ used here, see:
Dill K.Montgomery DD.Wang W.Tsai JC. Anal. Chim. Acta 2001, 444: 69 ; electrode diameter = 92 µM; distance between the Pt electrodes (rectangular cells) = 245.3 µM and 337.3 µM - For the use of acid on the chips see:
-
13a
Rossi FM, andMontgomery DD. inventors; WO 0053625. -
13b
Maurer K.McShea A.Strathmann M.Dill K. J. Comb. Chem. 2005, 7: 637 - For Pd(II) reactions see:
-
14a
Tesfu E.Roth K.Maurer K.Moeller KD. Org. Lett. 2006, 8: 709 -
14b
Tesfu E.Maurer K.Ragsdale SR.Moeller KD. J. Am. Chem. Soc. 2004, 126: 6212 -
14c
Tesfu E.Maurer K.McShae A.Moeller KD. J. Am. Chem. Soc. 2006, 128: 70 - 15 For a Pd(0) reaction see:
Tian J.Maurer K.Tesfu E.Moeller KD. J. Am. Chem. Soc. 2005, 127: 1392 - 16
Maurer K. inventors; US 2007065877. For a base-cleavable linker, see: - 17 This procedure followed the work of:
Smith AB.Lupo AT.Ohba M.Chen K. J. Am. Chem. Soc. 1989, 111: 6648