Abstract
Unprecedented reactions involving the highly reactive double bonds of the fullerene sphere undergoing cobalt-catalyzed [2+2+1], thermally induced [2+2], and ene cycloadditions have been researched in a systematic way. In addition, the highly efficient retro-cycloaddition processes of fulleropyrrolidines (Prato cycloadducts) and fulleroisoxazolines are also discussed in detail. These new reactions in fullerene chemistry reveal that the unique scenario presented by the convex and highly reactive surface in fullerenes has not yet been appropriately exploited, and that it is still possible to create new and fascinating structures.
1 Introduction
2 Fuller-1,6-enynes: New and Versatile Building Blocks in Fullerene Chemistry
2.1 The Pauson-Khand Reaction on [60]Fullerene
2.2 Thermally Induced [2+2] Cyclizations of Fuller-1,6-enynes
2.3 Thermally Induced Intramolecular Ene Reaction of Fuller-1,6-enynes: Synthesis of Fulleroallenes
2.4 Theoretical Study of the Thermally Induced Intramolecular Reactions of Fuller-1,6-enynes
3 Retro-Cycloaddition of Fulleropyrrolidines (Retro-Prato Reaction): A New and Surprising Reaction!
4 Retro-Cycloaddition Reaction of Fulleroisoxazolines
5 Conclusions
Key words
fullerenes - Pauson-Khand reactions - allenes - cycloadditions - fuller-1,6-enynes
References and Notes
1
Kroto HW.
Heath JR.
O’Brien SC.
Curl RF.
Smalley RE.
Nature
1985,
318:
162
2
Iijima S.
Nature
1991,
354:
56
Nobel Lectures:
3a
Smalley RE.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1594
3b
Kroto HW.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1578
3c
Curl RF.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1566
For some recent books on certain carbon allotropes, see:
4a
Hirsch A.
The Chemistry of Fullerenes
Wiley-VCH;
Weinheim:
2005.
4b
Fullerenes: From Synthesis to Optoelectronic Properties
Guldi DM.
Martín N.
Kluwer Academic;
Dordrecht:
2002.
4c
Taylor R.
Lecture Notes on Fullerene Chemistry: A Handbook for Chemists
Imperial College Press;
London:
1999.
4d
Reich S.
Thomsen C.
Maultzsch J.
Carbon Nanotubes: Basic Concepts and Physical Properties
Wiley-VCH;
Weinheim:
2004.
4e
Fullerenes
Langa F.
Nierengarten J.-F.
Royal Society of Chemistry;
Cambridge:
2007.
5
Haddon RC.
Acc. Chem. Res.
1992,
25:
127
6 For a review, see: Rivero MR.
Adrio J.
Carretero JC.
Eur. J. Org. Chem.
2002,
2881
For recent reviews on the PK reaction, see:
7a
Fletcher AJ.
Christie SDR.
J. Chem. Soc., Perkin Trans. 1
2000,
1657
7b
Brummond KM.
Kent JL.
Tetrahedron
2000,
56:
3263
7c
Sugihara T.
Tamaguchi M.
Nishizawa M.
Chem. Eur. J.
2001,
7:
3315
7d
Gibson SE.
Stevenazzi A.
Angew. Chem. Int. Ed.
2003,
42:
1800
7e
Blanco-Urgoiti J.
Añorbe L.
Pérez-Serrano L.
Domínguez G.
Pérez-Castells J.
Chem. Soc. Rev.
2004,
33:
32
8a
Martín N.
Altable M.
Filippone S.
Martín-Domenech A.
Chem. Commun.
2004,
1338
8b
Martín N.
Altable M.
Filippone S.
Martín-Domenech A.
Poater A.
Solá M.
Chem. Eur. J.
2005,
11:
2716
9a
Pérez-Serrano L.
Blanco-Urgoiti J.
Casarrubios L.
Domínguez G.
Pérez-Castells J.
J. Org. Chem.
2000,
65:
3513
9b
Lovely CJ.
Seshadri H.
Wayland BR.
Cordes AW.
Org. Lett.
2001,
3:
2607
10
Prato M.
Maggini M.
Acc. Chem. Res.
1998,
31:
519
11
Bagno A.
Claeson S.
Maggini M.
Martini ML.
Prato M.
Scorrano G.
Chem. Eur. J.
2002,
8:
1015
12
Borsato G.
Della Negra F.
Gasparrini F.
Misiti D.
Lucchini V.
Possamai G.
Villani C.
Zambon A.
J. Org. Chem.
2004,
69:
5785
13a
Pérez-Serrano L.
Casarrubios L.
Domínguez G.
Pérez-Castells J.
Org. Lett.
1999,
8:
1187
13b
Blanco-Urgoiti J.
Casarrubios L.
Domínguez G.
Pérez-Castells J.
Tetrahedron Lett.
2002,
43:
5763-5765
13c It is worth mentioning that the PK reaction also proceeds in the absence of molecular sieves although the products are formed in lower yield.
14 Acetylene-linked di- and tetracobalt-carbonyl clusters covalently connected to C60 have also been reported, see: Draper SM.
Delamesier M.
Champeil E.
Twamley B.
Byrne JJ.
Long CJ.
J. Organomet. Chem.
1999,
589:
157
15a
Kotha S.
Brahmachary E.
Bioorg. Med. Chem.
2002,
10:
2291
15b
Kotha S.
Mohanraja K.
Durani S.
Chem. Commun.
2000,
1909
16 AM1 calculations with the AMPAC 6.55 program have been carried out for carbon monoxide and complexes 17, 19, and 20 in which the phenyl group has been substituted by a methyl group. The results give a reaction enthalpy of -73.3 and -116.2 kcal mol-1 for the reactions 17 + CO 19 and 17 + 2CO 20, respectively. The difference of 30.4 kcal·mol-1 [(-116.2) - 2(-73.3)] can be taken as an indication of excess strain energy in 20 compared with 19.
17a
Echegoyen L.
Echegoyen LE.
Acc. Chem. Res.
1998,
31:
593
17b
Martín N.
Sánchez L.
Illescas B.
Pérez I.
Chem. Rev.
1998,
98:
2527
17c
Carano M.
Da Ros T.
Fanti M.
Kordatos K.
Marcaccio M.
Paolucci F.
Prato M.
Bofia S.
Zerbetto F.
J. Am. Chem. Soc.
2003,
125:
7139
17d
Suzuki T.
Maruyama Y.
Akasaka T.
Ando W.
Kobayashi K.
Nagase S.
J. Am. Chem. Soc.
1994,
116:
1359
18a
Pericàs MA.
Balseéis J.
Castro J.
Marchuela I.
Moyano A.
Riera A.
Vázquez J.
Verdaguer X.
Pure Appl. Chem.
2002,
74:
167
18b
Yamanaka M.
Nakamura E.
J. Am. Chem. Soc.
2001,
123:
1703
19a
Hoke SH.
Molstad J.
Dilettato D.
Jay MJ.
Carlson D.
Kahr B.
Cooks RG.
J. Org. Chem.
1992,
57:
5069
19b
Wilson SR.
Kaprinidis N.
Wu Y.
Schuster DI.
J. Am. Chem. Soc.
1993,
115:
8495
19c
Vassilikogiannakis G.
Orfanopoulos M.
J. Am. Chem. Soc.
1997,
119:
7394
19d
Bildstein B.
Schweiger M.
Angleitner H.
Kopacka H.
Wurst K.
Ongania K.-H.
Fontani M.
Zanello P.
Organometallics
1999,
18:
4286
19e
Hsiao T.-Y.
Chidambareswaran SK.
Cheng Ch.-H.
J. Org. Chem.
1998,
63:
6119
20
Martín N.
Altable M.
Filippone S.
Martín-Domenech A.
Güell M.
Solà M.
Angew. Chem. Int. Ed.
2006,
45:
1439
For a review, see:
21a
Lloyd-Jones GC.
Org. Biomol. Chem.
2003,
215
21b
Aubert C.
Buisine O.
Malacria M.
Chem. Rev.
2002,
102:
813
21c
Diver ST.
Giessert AJ.
Chem. Rev.
2004,
104:
1317
21d
Echavarren AM.
Nevado C.
Chem. Soc. Rev.
2004,
33:
431
For a review, see:
22a
Mori M.
Top. Organomet. Chem.
1998,
1:
133
22b
Poulsen CS.
Madsen R.
Synthesis
2003,
1
23a
Madhushaw RJ.
Lo Ch.-Y.
Hwang Ch.-W.
Su M.-D.
Shen H.-C.
Pal S.
Shaikh IR.
Liu R.-S.
J. Am. Chem. Soc.
2004,
126:
15560
23b
Chatani N.
Inoue H.
Kotsuma T.
Murai S.
J. Am. Chem. Soc.
2002,
124:
10294
23c
Nieto-Oberhuber C.
López S.
Echavarren AM.
J. Am. Chem. Soc.
2005,
127:
6178
24a
Trost BM.
Yanai M.
Hoogsteen K.
J. Am. Chem. Soc.
1993,
115:
5294
24b
Corey EJ.
Carey FA.
Winter RAE.
J. Am. Chem. Soc.
1965,
87:
934
24c For a review, see: Liebman JF.
Greenberg A.
Chem. Rev.
1976,
76:
311
25
Maier WF.
Schleyer PVR.
J. Am. Chem. Soc.
1981,
103:
1891
26
Oba G.
Moreira G.
Manuel G.
Koenig M.
J. Organomet. Chem.
2002,
643-644:
324
27
López A.
Pleixats R.
Tetrahedron: Asymmetry
1998,
9:
1967
Some examples of intermolecular ene reactions involving fullerenes have been previously reported, see:
28a
Cronakis N.
Orfanopoulos M.
Org. Lett.
1999,
1:
1909
28b
Miles WH.
Smiley PM.
J. Org. Chem.
1996,
61:
2559
28c
Komatsu K.
Murata Y.
Sugita N.
Wan TSM.
Chem. Lett.
1994,
635
28d
Wu S.
Shu L.
Fan K.
Tetrahedron Lett.
1994,
35:
919
29 For a recent review on the synthetic applications of allenes, see: Ma S.
Chem. Rev.
2005,
105:
2829
30a
Modern Allene Chemistry
Krause N.
Hashmi ASK.
Wiley-VCH;
Weinheim:
2004.
30b For a recent review on the synthesis of allenic natural products and pharmaceuticals, see: Hoffmann-Röder A.
Krause N.
Angew. Chem. Int. Ed.
2004,
43:
1196
31
Yamazaki S.
Yamada K.
Yamamoto K.
Org. Biomol. Chem.
2004,
2:
257
32
Alameda-Angulo C.
Quiclet-Sire B.
Zard SZ.
Tetrahedron Lett.
2006,
47:
913
33
Oppolzer W.
Pfenninger E.
Keller K.
Helv. Chim. Acta
1973,
56:
1807
34
Shea KJ.
Burke LD.
England WP.
Tetrahedron Lett.
1988,
29:
407
35
Jayanth TT.
Jeganmohan M.
Cheng M.-J.
Chu S.-Y.
Cheng Ch.-H.
J. Am. Chem. Soc.
2006,
128:
2232
36
Altable M.
Filippone S.
Martín-Domenech A.
Güell M.
Solà M.
Martín N.
Org. Lett.
2006,
8:
5959
37
Güell M.
Altable M.
Filippone S.
Martín-Domenech A.
Martín N.
Solà M.
J. Phys. Chem. A
2007,
111:
5253
38
Laird DW.
Gilbert JC.
J. Am. Chem. Soc.
2001,
123:
6704
39
Su M.-D.
J. Chin. Chem. Soc. (Taipei)
2005,
52:
599
40
Olivella S.
Pericàs MA.
Riera A.
Solé A.
J. Chem. Soc., Perkin Trans. 2
1986,
613
41a
Hehre WJ.
Ditchfield R.
Pople JA.
J. Chem. Phys.
1972,
56:
2257
41b
Hariharan PC.
Pople JA.
Theor. Chim. Acta
1973,
28:
213
41c
Francl M.
Pietro WJ.
Hehre WJ.
Binkley JS.
Gordon MS.
Frees DJ.
Pople JA.
J. Chem. Phys.
1982,
77:
3654
42a
Wiest O.
Houk KN.
Black KA.
Thomas BIV.
J. Am. Chem. Soc.
1995,
117:
8594
42b
Goldstein E.
Beno B.
Houk KN.
J. Am. Chem. Soc.
1996,
118:
6036
42c
Wiest O.
Houk KN.
Top. Curr. Chem.
1996,
183:
1
42d
Dinadayalane TC.
Vijaya R.
Smitha A.
Narahari-Sastry G.
J. Phys. Chem. A
2002,
106:
1627
42e
Isobe H.
Yamanaka S.
Yamaguchi K.
Int. J. Quantum Chem.
2003,
95:
532
43
Bachrach SM.
Gilbert JC.
J. Org. Chem.
2004,
69:
6357
44
Hirsch A.
Brettreich M.
Fullerenes: Chemistry and Reactions
Wiley-VCH;
Weinheim:
2005.
45
Tagmatarchis N.
Prato M.
Synlett
2003,
768
46
Maggini M.
Menna E. In
Fullerenes: From Synthesis to Optoelectronic Properties
Guldi DM.
Martín N.
Kluwer Academic;
Dordrecht:
2002.
Chap. 1.
p.1-50
47
Martín N.
Segura JL.
Wudl F. In
Fullerenes: From Synthesis to Optoelectronic Properties
Guldi DM.
Martín N.
Kluwer Academic;
Dordrecht:
2002.
Chap. 3.
p.81-120
48a
Bingel C.
Chem. Ber.
1993,
126:
1957
48b
Camps X.
Hirsch A.
J. Chem. Soc., Perkin Trans. 1
1997,
1595
49
Martín N.
Altable M.
Filippone S.
Martín-Domenech A.
Echegoyen L.
Cardona CM.
Angew. Chem. Int. Ed.
2006,
45:
110
50
Sinbandhit S.
Hamelin J.
J. Chem. Soc., Chem. Commun.
1977,
768
51a
Maggini M.
Scorrano G.
Prato M.
J. Am. Chem. Soc.
1993,
115:
9798
51b
Zhou D.-J.
Gan L.-B.
Tan H.-S.
Luo C.-P.
Huang C.-H.
Pan J.-Q.
Lü M.-J.
Wu Y.
Chin. Chem. Lett.
1995,
6:
1033
51c
Kordatos K.
Da Ros T.
Prato M.
Luo C.
Guldi D.
Monatsh. Chem.
2001,
132:
63
52
Wilson SR.
Lu QJ.
J. Org. Chem.
1995,
60:
6496
53a
Duchamp JC.
Demortier A.
Fletcher KR.
Dorn D.
Iezzi EB.
Glass T.
Dorn HC.
Chem. Phys. Lett.
2003,
375:
655
53b
Krause M.
Dunsch L.
ChemPhysChem
2004,
5:
1445
54a
Iezzi EB.
Duchamp JC.
Harich K.
Glass TE.
Lee HM.
Olmstead MM.
Balch AL.
Dorn HC.
J. Am. Chem. Soc.
2002,
124:
524
54b
Lee HM.
Olmstead MM.
Iezzi E.
Duchamp JC.
Dorn HC.
Balch AL.
J. Am. Chem. Soc.
2002,
124:
3494
55
Lukoyanova O.
Cardona CM.
Altable M.
Filippone S.
Martín-Domenech A.
Martín N.
Echegoyen L.
Angew. Chem. Int. Ed.
2006,
45:
7430
56
Boulas PL.
Zuo Y.
Echegoyen L.
Chem. Commun.
1996,
1547
57
Kessinger R.
Fender NS.
Echegoyen LE.
Thilgen C.
Echegoyen L.
Diederich F.
Chem. Eur. J.
2000,
6:
2184
58a
Meier MS.
Poplawska M.
J. Org. Chem.
1993,
58:
4524
58b
Irngartinger H.
Köhler CM.
Huber-Patz U.
Krätschmer W.
Chem. Ber.
1994,
127:
581
58c
Martín N.
Illescas B.
J. Org. Chem.
2000,
65:
5986
58d
Martín N.
Illescas B.
C. R. Chim.
2006,
9:
1038
59
Larsen KE.
Torssell KB.
Tetrahedron
1984,
40:
2985
60
Martín N.
Altable M.
Filippone S.
Martín-Domenech A.
Martínez-Álvarez R.
Suarez M.
Plonska-Brzezinska ME.
Lukoyanova O.
Echegoyen L.
J. Org. Chem.
2007,
72:
3840
61a
Meier MS.
Poplawska M.
Tetrahedron
1996,
52:
5043
61b
Langa F.
de la Cruz P.
Espíldora E.
González-Cortés A.
de la Hoz A.
López-Arza V.
J. Org. Chem.
2000,
65:
8675
61c
Da Ros T.
Prato M.
Novello F.
Maggini M.
De Amici M.
De Micheli C.
Chem. Commun.
1997,
59
61d
Da Ros T.
Prato M.
Lucchini V.
J. Org. Chem.
2000,
65:
4289
61e
Haufler RE.
Conceicäo J.
Chibante LPF.
Chai Y.
Byrne NE.
Flanagan S.
Haley MM.
O’Brien SC.
Pan C.
Xiao Z.
Billups WE.
Ciuofolini MA.
Hauge RH.
Margrave JL.
Wilson LJ.
Curl RF.
Smalley RE.
J. Phys. Chem.
1990,
94:
8634
62
Singal KK.
Kaur J.
Chem. Environ. Res.
2000,
9:
47
63
Martín N.
Chem. Commun.
2006,
2093