RSS-Feed abonnieren
DOI: 10.1055/s-2007-990939
New Reactions in Fullerene Chemistry
Publikationsverlauf
Publikationsdatum:
03. Dezember 2007 (online)

Abstract
Unprecedented reactions involving the highly reactive double bonds of the fullerene sphere undergoing cobalt-catalyzed [2+2+1], thermally induced [2+2], and ene cycloadditions have been researched in a systematic way. In addition, the highly efficient retro-cycloaddition processes of fulleropyrrolidines (Prato cycloadducts) and fulleroisoxazolines are also discussed in detail. These new reactions in fullerene chemistry reveal that the unique scenario presented by the convex and highly reactive surface in fullerenes has not yet been appropriately exploited, and that it is still possible to create new and fascinating structures.
1 Introduction
2 Fuller-1,6-enynes: New and Versatile Building Blocks in Fullerene Chemistry
2.1 The Pauson-Khand Reaction on [60]Fullerene
2.2 Thermally Induced [2+2] Cyclizations of Fuller-1,6-enynes
2.3 Thermally Induced Intramolecular Ene Reaction of Fuller-1,6-enynes: Synthesis of Fulleroallenes
2.4 Theoretical Study of the Thermally Induced Intramolecular Reactions of Fuller-1,6-enynes
3 Retro-Cycloaddition of Fulleropyrrolidines (Retro-Prato Reaction): A New and Surprising Reaction!
4 Retro-Cycloaddition Reaction of Fulleroisoxazolines
5 Conclusions
Key words
fullerenes - Pauson-Khand reactions - allenes - cycloadditions - fuller-1,6-enynes
- 1
Kroto HW.Heath JR.O’Brien SC.Curl RF.Smalley RE. Nature 1985, 318: 162 - 2
Iijima S. Nature 1991, 354: 56 - Nobel Lectures:
-
3a
Smalley RE. Angew. Chem., Int. Ed. Engl. 1997, 36: 1594 -
3b
Kroto HW. Angew. Chem., Int. Ed. Engl. 1997, 36: 1578 -
3c
Curl RF. Angew. Chem., Int. Ed. Engl. 1997, 36: 1566 - For some recent books on certain carbon allotropes, see:
-
4a
Hirsch A. The Chemistry of Fullerenes Wiley-VCH; Weinheim: 2005. -
4b
Fullerenes: From Synthesis to Optoelectronic Properties
Guldi DM.Martín N. Kluwer Academic; Dordrecht: 2002. -
4c
Taylor R. Lecture Notes on Fullerene Chemistry: A Handbook for Chemists Imperial College Press; London: 1999. -
4d
Reich S.Thomsen C.Maultzsch J. Carbon Nanotubes: Basic Concepts and Physical Properties Wiley-VCH; Weinheim: 2004. -
4e
Fullerenes
Langa F.Nierengarten J.-F. Royal Society of Chemistry; Cambridge: 2007. - 5
Haddon RC. Acc. Chem. Res. 1992, 25: 127 - 6 For a review, see:
Rivero MR.Adrio J.Carretero JC. Eur. J. Org. Chem. 2002, 2881 - For recent reviews on the PK reaction, see:
-
7a
Fletcher AJ.Christie SDR. J. Chem. Soc., Perkin Trans. 1 2000, 1657 -
7b
Brummond KM.Kent JL. Tetrahedron 2000, 56: 3263 -
7c
Sugihara T.Tamaguchi M.Nishizawa M. Chem. Eur. J. 2001, 7: 3315 -
7d
Gibson SE.Stevenazzi A. Angew. Chem. Int. Ed. 2003, 42: 1800 -
7e
Blanco-Urgoiti J.Añorbe L.Pérez-Serrano L.Domínguez G.Pérez-Castells J. Chem. Soc. Rev. 2004, 33: 32 -
8a
Martín N.Altable M.Filippone S.Martín-Domenech A. Chem. Commun. 2004, 1338 -
8b
Martín N.Altable M.Filippone S.Martín-Domenech A.Poater A.Solá M. Chem. Eur. J. 2005, 11: 2716 -
9a
Pérez-Serrano L.Blanco-Urgoiti J.Casarrubios L.Domínguez G.Pérez-Castells J. J. Org. Chem. 2000, 65: 3513 -
9b
Lovely CJ.Seshadri H.Wayland BR.Cordes AW. Org. Lett. 2001, 3: 2607 - 10
Prato M.Maggini M. Acc. Chem. Res. 1998, 31: 519 - 11
Bagno A.Claeson S.Maggini M.Martini ML.Prato M.Scorrano G. Chem. Eur. J. 2002, 8: 1015 - 12
Borsato G.Della Negra F.Gasparrini F.Misiti D.Lucchini V.Possamai G.Villani C.Zambon A. J. Org. Chem. 2004, 69: 5785 -
13a
Pérez-Serrano L.Casarrubios L.Domínguez G.Pérez-Castells J. Org. Lett. 1999, 8: 1187 -
13b
Blanco-Urgoiti J.Casarrubios L.Domínguez G.Pérez-Castells J. Tetrahedron Lett. 2002, 43: 5763-5765 -
13c
It is worth mentioning that the PK reaction also proceeds in the absence of molecular sieves although the products are formed in lower yield.
- 14 Acetylene-linked di- and tetracobalt-carbonyl clusters covalently connected to C60 have also been reported, see:
Draper SM.Delamesier M.Champeil E.Twamley B.Byrne JJ.Long CJ. J. Organomet. Chem. 1999, 589: 157 -
15a
Kotha S.Brahmachary E. Bioorg. Med. Chem. 2002, 10: 2291 -
15b
Kotha S.Mohanraja K.Durani S. Chem. Commun. 2000, 1909 -
17a
Echegoyen L.Echegoyen LE. Acc. Chem. Res. 1998, 31: 593 -
17b
Martín N.Sánchez L.Illescas B.Pérez I. Chem. Rev. 1998, 98: 2527 -
17c
Carano M.Da Ros T.Fanti M.Kordatos K.Marcaccio M.Paolucci F.Prato M.Bofia S.Zerbetto F. J. Am. Chem. Soc. 2003, 125: 7139 -
17d
Suzuki T.Maruyama Y.Akasaka T.Ando W.Kobayashi K.Nagase S. J. Am. Chem. Soc. 1994, 116: 1359 -
18a
Pericàs MA.Balseéis J.Castro J.Marchuela I.Moyano A.Riera A.Vázquez J.Verdaguer X. Pure Appl. Chem. 2002, 74: 167 -
18b
Yamanaka M.Nakamura E. J. Am. Chem. Soc. 2001, 123: 1703 -
19a
Hoke SH.Molstad J.Dilettato D.Jay MJ.Carlson D.Kahr B.Cooks RG. J. Org. Chem. 1992, 57: 5069 -
19b
Wilson SR.Kaprinidis N.Wu Y.Schuster DI. J. Am. Chem. Soc. 1993, 115: 8495 -
19c
Vassilikogiannakis G.Orfanopoulos M. J. Am. Chem. Soc. 1997, 119: 7394 -
19d
Bildstein B.Schweiger M.Angleitner H.Kopacka H.Wurst K.Ongania K.-H.Fontani M.Zanello P. Organometallics 1999, 18: 4286 -
19e
Hsiao T.-Y.Chidambareswaran SK.Cheng Ch.-H. J. Org. Chem. 1998, 63: 6119 - 20
Martín N.Altable M.Filippone S.Martín-Domenech A.Güell M.Solà M. Angew. Chem. Int. Ed. 2006, 45: 1439 - For a review, see:
-
21a
Lloyd-Jones GC. Org. Biomol. Chem. 2003, 215 -
21b
Aubert C.Buisine O.Malacria M. Chem. Rev. 2002, 102: 813 -
21c
Diver ST.Giessert AJ. Chem. Rev. 2004, 104: 1317 -
21d
Echavarren AM.Nevado C. Chem. Soc. Rev. 2004, 33: 431 - For a review, see:
-
22a
Mori M. Top. Organomet. Chem. 1998, 1: 133 -
22b
Poulsen CS.Madsen R. Synthesis 2003, 1 -
23a
Madhushaw RJ.Lo Ch.-Y.Hwang Ch.-W.Su M.-D.Shen H.-C.Pal S.Shaikh IR.Liu R.-S. J. Am. Chem. Soc. 2004, 126: 15560 -
23b
Chatani N.Inoue H.Kotsuma T.Murai S. J. Am. Chem. Soc. 2002, 124: 10294 -
23c
Nieto-Oberhuber C.López S.Echavarren AM. J. Am. Chem. Soc. 2005, 127: 6178 -
24a
Trost BM.Yanai M.Hoogsteen K. J. Am. Chem. Soc. 1993, 115: 5294 -
24b
Corey EJ.Carey FA.Winter RAE. J. Am. Chem. Soc. 1965, 87: 934 -
24c For a review, see:
Liebman JF.Greenberg A. Chem. Rev. 1976, 76: 311 - 25
Maier WF.Schleyer PVR. J. Am. Chem. Soc. 1981, 103: 1891 - 26
Oba G.Moreira G.Manuel G.Koenig M. J. Organomet. Chem. 2002, 643-644: 324 - 27
López A.Pleixats R. Tetrahedron: Asymmetry 1998, 9: 1967 - Some examples of intermolecular ene reactions involving fullerenes have been previously reported, see:
-
28a
Cronakis N.Orfanopoulos M. Org. Lett. 1999, 1: 1909 -
28b
Miles WH.Smiley PM. J. Org. Chem. 1996, 61: 2559 -
28c
Komatsu K.Murata Y.Sugita N.Wan TSM. Chem. Lett. 1994, 635 -
28d
Wu S.Shu L.Fan K. Tetrahedron Lett. 1994, 35: 919 - 29 For a recent review on the synthetic applications of allenes, see:
Ma S. Chem. Rev. 2005, 105: 2829 -
30a
Modern Allene Chemistry
Krause N.Hashmi ASK. Wiley-VCH; Weinheim: 2004. -
30b For a recent review on the synthesis of allenic natural products and pharmaceuticals, see:
Hoffmann-Röder A.Krause N. Angew. Chem. Int. Ed. 2004, 43: 1196 - 31
Yamazaki S.Yamada K.Yamamoto K. Org. Biomol. Chem. 2004, 2: 257 - 32
Alameda-Angulo C.Quiclet-Sire B.Zard SZ. Tetrahedron Lett. 2006, 47: 913 - 33
Oppolzer W.Pfenninger E.Keller K. Helv. Chim. Acta 1973, 56: 1807 - 34
Shea KJ.Burke LD.England WP. Tetrahedron Lett. 1988, 29: 407 - 35
Jayanth TT.Jeganmohan M.Cheng M.-J.Chu S.-Y.Cheng Ch.-H. J. Am. Chem. Soc. 2006, 128: 2232 - 36
Altable M.Filippone S.Martín-Domenech A.Güell M.Solà M.Martín N. Org. Lett. 2006, 8: 5959 - 37
Güell M.Altable M.Filippone S.Martín-Domenech A.Martín N.Solà M. J. Phys. Chem. A 2007, 111: 5253 - 38
Laird DW.Gilbert JC. J. Am. Chem. Soc. 2001, 123: 6704 - 39
Su M.-D. J. Chin. Chem. Soc. (Taipei) 2005, 52: 599 - 40
Olivella S.Pericàs MA.Riera A.Solé A. J. Chem. Soc., Perkin Trans. 2 1986, 613 -
41a
Hehre WJ.Ditchfield R.Pople JA. J. Chem. Phys. 1972, 56: 2257 -
41b
Hariharan PC.Pople JA. Theor. Chim. Acta 1973, 28: 213 -
41c
Francl M.Pietro WJ.Hehre WJ.Binkley JS.Gordon MS.Frees DJ.Pople JA. J. Chem. Phys. 1982, 77: 3654 -
42a
Wiest O.Houk KN.Black KA.Thomas BIV. J. Am. Chem. Soc. 1995, 117: 8594 -
42b
Goldstein E.Beno B.Houk KN. J. Am. Chem. Soc. 1996, 118: 6036 -
42c
Wiest O.Houk KN. Top. Curr. Chem. 1996, 183: 1 -
42d
Dinadayalane TC.Vijaya R.Smitha A.Narahari-Sastry G. J. Phys. Chem. A 2002, 106: 1627 -
42e
Isobe H.Yamanaka S.Yamaguchi K. Int. J. Quantum Chem. 2003, 95: 532 - 43
Bachrach SM.Gilbert JC. J. Org. Chem. 2004, 69: 6357 - 44
Hirsch A.Brettreich M. Fullerenes: Chemistry and Reactions Wiley-VCH; Weinheim: 2005. - 45
Tagmatarchis N.Prato M. Synlett 2003, 768 - 46
Maggini M.Menna E. In Fullerenes: From Synthesis to Optoelectronic PropertiesGuldi DM.Martín N. Kluwer Academic; Dordrecht: 2002. Chap. 1. p.1-50 - 47
Martín N.Segura JL.Wudl F. In Fullerenes: From Synthesis to Optoelectronic PropertiesGuldi DM.Martín N. Kluwer Academic; Dordrecht: 2002. Chap. 3. p.81-120 -
48a
Bingel C. Chem. Ber. 1993, 126: 1957 -
48b
Camps X.Hirsch A. J. Chem. Soc., Perkin Trans. 1 1997, 1595 - 49
Martín N.Altable M.Filippone S.Martín-Domenech A.Echegoyen L.Cardona CM. Angew. Chem. Int. Ed. 2006, 45: 110 - 50
Sinbandhit S.Hamelin J. J. Chem. Soc., Chem. Commun. 1977, 768 -
51a
Maggini M.Scorrano G.Prato M. J. Am. Chem. Soc. 1993, 115: 9798 -
51b
Zhou D.-J.Gan L.-B.Tan H.-S.Luo C.-P.Huang C.-H.Pan J.-Q.Lü M.-J.Wu Y. Chin. Chem. Lett. 1995, 6: 1033 -
51c
Kordatos K.Da Ros T.Prato M.Luo C.Guldi D. Monatsh. Chem. 2001, 132: 63 - 52
Wilson SR.Lu QJ. J. Org. Chem. 1995, 60: 6496 -
53a
Duchamp JC.Demortier A.Fletcher KR.Dorn D.Iezzi EB.Glass T.Dorn HC. Chem. Phys. Lett. 2003, 375: 655 -
53b
Krause M.Dunsch L. ChemPhysChem 2004, 5: 1445 -
54a
Iezzi EB.Duchamp JC.Harich K.Glass TE.Lee HM.Olmstead MM.Balch AL.Dorn HC. J. Am. Chem. Soc. 2002, 124: 524 -
54b
Lee HM.Olmstead MM.Iezzi E.Duchamp JC.Dorn HC.Balch AL. J. Am. Chem. Soc. 2002, 124: 3494 - 55
Lukoyanova O.Cardona CM.Altable M.Filippone S.Martín-Domenech A.Martín N.Echegoyen L. Angew. Chem. Int. Ed. 2006, 45: 7430 - 56
Boulas PL.Zuo Y.Echegoyen L. Chem. Commun. 1996, 1547 - 57
Kessinger R.Fender NS.Echegoyen LE.Thilgen C.Echegoyen L.Diederich F. Chem. Eur. J. 2000, 6: 2184 -
58a
Meier MS.Poplawska M. J. Org. Chem. 1993, 58: 4524 -
58b
Irngartinger H.Köhler CM.Huber-Patz U.Krätschmer W. Chem. Ber. 1994, 127: 581 -
58c
Martín N.Illescas B. J. Org. Chem. 2000, 65: 5986 -
58d
Martín N.Illescas B. C. R. Chim. 2006, 9: 1038 - 59
Larsen KE.Torssell KB. Tetrahedron 1984, 40: 2985 - 60
Martín N.Altable M.Filippone S.Martín-Domenech A.Martínez-Álvarez R.Suarez M.Plonska-Brzezinska ME.Lukoyanova O.Echegoyen L. J. Org. Chem. 2007, 72: 3840 -
61a
Meier MS.Poplawska M. Tetrahedron 1996, 52: 5043 -
61b
Langa F.de la Cruz P.Espíldora E.González-Cortés A.de la Hoz A.López-Arza V. J. Org. Chem. 2000, 65: 8675 -
61c
Da Ros T.Prato M.Novello F.Maggini M.De Amici M.De Micheli C. Chem. Commun. 1997, 59 -
61d
Da Ros T.Prato M.Lucchini V. J. Org. Chem. 2000, 65: 4289 -
61e
Haufler RE.Conceicäo J.Chibante LPF.Chai Y.Byrne NE.Flanagan S.Haley MM.O’Brien SC.Pan C.Xiao Z.Billups WE.Ciuofolini MA.Hauge RH.Margrave JL.Wilson LJ.Curl RF.Smalley RE. J. Phys. Chem. 1990, 94: 8634 - 62
Singal KK.Kaur J. Chem. Environ. Res. 2000, 9: 47 - 63
Martín N. Chem. Commun. 2006, 2093
References and Notes
AM1 calculations with the AMPAC 6.55 program have been carried out for carbon monoxide and complexes 17, 19, and 20 in which the phenyl group has been substituted by a methyl group. The results give a reaction enthalpy of -73.3 and -116.2 kcal mol-1 for the reactions 17 + CO 19 and 17 + 2CO 20, respectively. The difference of 30.4 kcal·mol-1 [(-116.2) - 2(-73.3)] can be taken as an indication of excess strain energy in 20 compared with 19.