References and Notes
-
2a
Mitsunobu O. In
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Pergamon;
London:
1991.
p.1
-
2b
Baggett N. In
Comprehensive Organic Chemistry
Vol. 1:
Stoddart JF.
Pergamon;
London:
1979.
p.799
- 3
Buckingham J.
Dictionary of Natural Products
University Press;
Cambridge MA:
1994.
-
For selected reviews for the preparation of ethers, see:
-
4a
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
Wiley-VCH;
New York:
1999.
-
4b
Larock RC.
Comprehensive Organic Transformation
2nd ed.:
Wiley-VCH;
New York:
1999.
-
5a
Dermer OC.
Chem. Rev.
1934,
14:
385
-
5b
Williamson AW.
J. Chem. Soc.
1852,
229
-
For selected reviews for Ullmann ether formation, see:
-
6a
Nelson TD.
Crouch RD.
Org. React.
2004,
63:
265
-
6b
Hassan J.
Sevignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem. Rev.
2002,
102:
1359
-
6c
Sawyer JS.
Tetrahedron
2000,
56:
5045
-
6d
Theil F.
Angew Chem. Int. Ed.
1999,
38:
2345
-
7a
Tan SN.
Dryfe RA.
Girault HH.
Helv. Chim. Acta
1994,
77:
231
-
7b
Alvarez-Builla J.
Vaquero JJ.
Garcia-Navio JL.
Cabello JF.
Sunkel C.
Fau de Casa-Juana M.
Dorrego F.
Santos L.
Tetrahedron
1990,
46:
967
-
7c
Thoman CJ.
Habeeb TD.
Huhn M.
Korpusik M.
Slish DF.
J. Org. Chem.
1989,
54:
4476
-
8a
Zolfigol MA.
Mohammadpoor-Baltork I.
Habibi D.
Mirjalili BF.
Bamoniri A.
Tetrahedron Lett.
2003,
44:
8165
-
8b
Wang S.
Guin JA.
Chem. Commun.
2000,
2499
-
For Pd-mediated Ullmann modification, see:
-
9a
Torraca KE.
Huang X.
Parrish CA.
Buchwald SL.
J. Am. Chem. Soc.
2002,
123:
10770
-
9b
Shelby Q.
Kataoka N.
Mann G.
Hartwig J.
J. Am. Chem. Soc.
2000,
122:
10718
-
For Pd-mediated etherification, see:
-
9c
Miller KJ.
Abu-Omar MM.
Eur. J. Org. Chem.
2003,
1294
-
9d
Kim H.
Lee C.
Org. Lett.
2002,
4:
4369
-
9e
Fujii Y.
Furugaki H.
Tamura E.
Yano S.
Kita K.
Bull. Chem. Soc. Jpn.
2005,
78:
456
-
9f
Bethmont V.
Fache F.
Lemaire M.
Tetrahedron Lett.
1995,
36:
4235
-
For Pt-mediated etherification, see:
-
9g
Verzele M.
Acke M.
Anteunis M.
J. Chem. Soc.
1963,
5598
-
For Rh-mediated etherification, see:
-
9h
Busch-Petersen J.
Corey EJ.
Org. Lett.
2000,
2:
1641
-
For Zn-mediated etherification, see:
-
9i
Paul S.
Gupta M.
Tetrahedron Lett.
2004,
45:
8825
- 10
Balsells RE.
Frasca AR.
Tetrahedron
1982,
38:
2525
-
11a
Emert J.
Goldenberg M.
Chiu GL.
Valeri A.
J. Org. Chem.
1977,
42:
2012
-
11b
Traynelis VJ.
Hergenrother WL.
Hanson HT.
Valicenti JA.
J. Org. Chem.
1964,
29:
123
-
12a
Denton SM.
Wood A.
Synlett
1999,
55
-
12b
Khanapure SP.
Manna S.
Rokach J.
Murphy RC.
Wheelan P.
Powell WS.
J. Org. Chem.
1995,
60:
1806
-
12c
Comins DL.
Brown JD.
J. Org. Chem.
1984,
49:
1078
-
12d
Bouveault L.
Bull. Soc. Chim. Fr.
1904,
31:
1306
-
13a
Meth-Cohn O. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon;
London:
1991.
p.777-794
-
13b
Vilsmeier A.
Haack A.
Ber. Dtsch. Chem. Ges.
1927,
60:
119
- 14
Serrano P.
Llebaria A.
Delgado A.
J. Org. Chem.
2005,
70:
7829
- 15
Kim JD.
Han G.
Zee OP.
Jung YH.
Tetrahedron Lett.
2003,
44:
733
- 17
Dalton DR.
Smith RC.
Jones DG.
Tetrahedron
2003,
44:
733
-
19a
Heaney F.
Fenlon J.
O’Mahony C.
McArdle P.
Cunningham D.
Org. Biomol. Chem.
2003,
1:
4302
-
19b
Miller KJ.
Abu-Omar MM.
Eur. J. Org. Chem.
2003,
1294
1 These authors contributed equally to this work.
16 Compound 3a: 1H NMR (300 MHz, CDCl3): δ = 4.67 (s, 4 H), 7.40-7.51 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 72.45, 127.95, 128.09, 128.73, 138.66. 1H NMR and 13C NMR spectra were identical to an authentic sample.
Compound 3b: 1H NMR (300 MHz, CDCl3): δ = 1.71 (br, 1 H), 4.74 (s, 2 H), 7.30-7.43 (m, 5 H). 1H NMR spectrum was identical to that of an authentic sample.
Compound 4a: 1H NMR (300 MHz, CDCl3): δ = 4.27 (dd, J = 6.0, 1.2 Hz, 4 H), 6.39 (dt, J = 15.6, 6.0 Hz, 2 H), 6.70 (d, J = 15.6 Hz, 2 H), 7.30-7.49 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 70.99, 126.30, 126.75, 127.93, 128.80, 132.83, 136.99. 1H NMR and 13C NMR spectra were consistent with literature values.19a
Compound 5a: 1H NMR (300 MHz, CDCl3): δ = 1.03 (t, J = 7.5 Hz, 6 H), 2.04-2.14 (m, 4 H), 3.93 (dd, J = 6.3, 1.2 Hz, 4 H), 5.56-5.64 (m, 2 H), 5.72-5.81 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 13.53, 25.51, 71.00, 125.57, 136.48.
Compound 6a: 1H NMR (300 MHz, CDCl3): δ = 1.66-1.79 (m, 8 H), 2.69 (t, J = 7.5 Hz, 4 H), 3.47 (t, J = 6.3 Hz, 4 H), 7.22-7.36 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 28.33, 29.67, 35.99, 70.98, 125.91, 128.51, 128.67, 142.76.
Compound 6b: 1H NMR (300 MHz, CDCl3): δ = 1.34 (br, 1 H), 1.63-1.79 (m, 4 H), 2.70 (t, J = 7.5 Hz, 2 H), 3.71 (t, J = 6.3 Hz, 2 H), 7.22-7.36 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 27.77, 32.58, 35.87, 63.07, 125.99, 128.54, 128.64, 142.55. 1H NMR and 13C NMR spectra were identical to an authentic sample.
Compound 7a: 1H NMR (300 MHz, CDCl3): δ = 1.45 (d, J = 6.6 Hz, 6 H), 1.53 (d, J = 6.6 Hz, 6 H), 4.32 (q, J = 6.6 Hz, 2 H), 4.60 (d, J = 6.6 Hz, 2 H), 7.21-7.42 (m, 20 H). 13C NMR (125 MHz, CDCl3): δ = 23.23, 24.93, 74.67, 74.89, 126.47, 126.56, 127.37, 127.61, 128.47, 128.69, 144.42, 144.50. Products 7a were 1:1 mixture of dl enantiomers and meso compounds, as illustrated in the literature.19b
Compound 7b: 1H NMR (300 MHz, CDCl3): δ = 1.54 (d, J = 6.6 Hz, 3 H), 2.09 (br, 1 H), 4.93 (q, J = 6.6 Hz, 1 H), 7.31-7.41 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 25.38, 70.65, 125.62, 127.71, 128.74, 146.06. 1H NMR and 13C NMR spectra were identical to an authentic sample.
Compound 7c: 1H NMR (500 MHz, CDCl3): δ = 5.30 (d, J = 11.0 Hz, 1 H), 5.81 (d, J = 17.5 Hz, 1 H), 6.78 (dd, J = 17.5, 11.0 Hz, 1 H), 7.31-7.49 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 114.04, 126.48, 128.06, 128.78, 137.17, 137.87. 1H NMR and 13C NMR spectra were identical to an authentic sample.
18 DMF-18O was prepared from chloromethylenedimethyl-ammonium chloride and H2O-18O (ca. 10 atom%) according to the literature.17 Mass spectrometric comparison of the parent ion peak ratios (74 and 76) to that of DMF-16O indicated that an enrichment of approx. 7.4% of 18O was present. The mass spectra of dibenzyl ether prepared from DMF-16O and DMF-18O was compared at m/e 221:223 [M + Na] and indicated that an enrichment of approx. 6.4% of 18O was present.