Subscribe to RSS
DOI: 10.1055/s-2007-991071
Electrocyclization Reactions of Annulated 1,2-Diazahepta-2,4-dien-6-ynyl Anions
Publication History
Publication Date:
25 September 2007 (online)
Abstract
Hydrazones 12a,b,f furnish annulated indenone derivatives (6-azafulvenes) 13a-d upon deprotonation with t-BuOK in DMF at 50 °C. In contrast, deprotonation of a similar N-methyl hydrazone 12d unexpectedly leads to the isoquinoline derivative 15. Mechanisms for both transformations are proposed, supported by quantum chemical density functional theory (DFT) and ab initio calculations.
Key words
anionic electrocyclic reactions - indenes - heterocycles - hydrazones - quinolines - 6-azafulvenes
-
1a
Zeni G.Larock RC. Chem. Rev. 2004, 104: 2285 -
1b
Zeni G.Larock RC. Chem. Rev. 2006, 106: 4644 -
1c
Cacchi S.Fabrizi G. Chem. Rev. 2005, 105: 2873 -
1d
Harvey DF.Sigano DM. Chem. Rev. 1996, 96: 271 -
1e
Jäger V.Viehe HG. In Houben-Weyl, Methoden der organischen Chemie Vol. 5/2a:Jäger V. Thieme; Stuttgart: 1977. p.883-908 -
2a
Sagar P.Fröhlich R.Würthwein E.-U. Angew. Chem. Int. Ed. 2004, 42: 5694 -
2b
Lyaskovskyy V.Fröhlich R.Würthwein E.-U. Synthesis 2007, 2135 -
2c
Lyaskovskyy V.Fröhlich R.Würthwein E.-U. Chem. Eur. J. 2007, 13: 3113 - 3
Lyaskovskyy V.Bergander K.Fröhlich R.Würthwein E.-U. Org. Lett. 2007, 9: 1049 -
4a
Kauffmann T.Berger D.Scheerer B.Woltermann A. Chem. Ber. 1977, 110: 3034 -
4b
Kauffmann T.Berger D.Scheerer B.Woltermann A. Angew. Chem., Int. Ed. Engl. 1970, 9: 961 -
4c
Kauffmann T.Beißner G.Köppelmann E.Kuhlmann D.Schott A.Schrecken H. Angew. Chem., Int. Ed. Engl. 1968, 7: 131 -
4d
Kauffmann T.Ban L.Kuhlmann D. Angew. Chem., Int. Ed. Engl. 1967, 6: 256 -
4e
Kauffmann T.Hansen J.Kosel C.Schoeneck W. Ann. 1962, 656: 103 -
4f
Baldwin JE.Adlington RM.Newington IM. J. Chem. Soc., Chem. Commun. 1986, 176 -
5a
Klötgen S.Fröhlich R.Würthwein E.-U. Tetrahedron 1996, 52: 14801 -
5b
Klötgen S.Würthwein E.-U. Tetrahedron Lett. 1995, 36: 7065 -
6a
Hunter DH.Steiner RP. Can. J. Chem. 1975, 53: 355 -
6b
Kloosterziel H.Van Drunen JAA. Recl. Trav. Chim. Pays-Bas 1970, 89: 667 -
11a
Korivi RP.Cheng C.-H. Org. Lett. 2005, 7: 5179 -
11b
Flippin LA.Muchowski JM. J. Org. Chem. 1993, 58: 2631 - 12
Bast K.Behrens M.Durst T.Gashey R.Huisgen R.Schiffer R.Temme R. Eur. J. Org. Chem. 1998, 379 -
13a
Van Gunsteren WE.Liu H.Muller-Plathe E. Chem. Eur. J. 1996, 2: 191 -
13b
Bühl M.Schaefer HF. J. Am. Chem. Soc. 1993, 115: 9143 -
13c
Geerke DP.Thiel S.Thiel W.van Gunsteren WF. J. Chem. Theory Comput. 2007, 3: 1499 -
13d
Yi R.Basch H.Hoz S. J. Org. Chem. 2002, 67: 5891 -
13e
Ren Y.Chu S.-Y. J. Phys. Chem. A 2004, 108: 7079 -
13f
Ulbrich R.Famulok M.Bosold F.Boche G. Tetrahedron Lett. 1990, 31: 1689 -
13g
Yamamoto F.Oae S. Bull. Chem. Soc. Jpn. 1975, 48: 77 -
13h
Erdik E.Ay M. Chem. Rev. 1989, 89: 1947 -
13i
Beak P.Li J. J. Am. Chem. Soc. 1991, 113: 2796 - 14
Snieckus V.Kan G. J. Chem. Soc., Chem. Commun. 1970, 172 - 15
Ghosh CK.Pal C.Maiti J.Sarkar M. J. Chem. Soc., Perkin Trans. 1 1988, 1489 - 16
Burgos C.Delgado F.García-Navío JF.Izquierdo ML.Alvarez-Builla J. Tetrahedron 1995, 51: 8649 -
17a
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Bakken V.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03, Revision C.02 Gaussian, Inc.; Wallingford CT: 2004. -
17b
Details of the quantum chemical calculations may be obtained from E.-U. Würthwein upon request.
- 18
Grimme S. J. Chem. Phys. 2003, 118: 9095
References and Notes
Preparation of 1-[2-(Hex-1-ynyl)benzylidene]-2-phenyl-hydrazine (12a): A mixture of 2-(1-hexynyl)benz-aldehyde (0.93 g, 5.00 mmol) and phenylhydrazine (0.54 g, 5.00 mmol) in anhyd CH2Cl2 (20 mL) was stirred in the presence of molecular sieves (4 Å) at r.t. for 16 h. Molecular sieves were removed by filtration through Celite and washed with CH2Cl2 (20 mL). The solvent was removed in vacuo to afford the hydrazone 12a (1.10 g, 4.00 mmol, 80%) as a yellow oil. The obtained hydrazone was pure enough to be used without further purification. FTIR (film): 3313 (br, w), 2931 (s), 2871 (s), 2862 (m), 2225 (m), 1575 (m), 1494 (s), 1448 (m), 1257 (s), 1145 (m) cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.98 (t, J = 7.3 Hz, 3 H), 1.47-1.68 (m, 4 H), 2.48 (t, J = 7.4 Hz, 2 H), 6.87 (tt, J = 7.3, 1.2 Hz, 1 H), 7.11-7.14 (m, 2 H), 7.19 (dd, J = 7.4, 1.4 Hz, 1 H), 7.25-7.30 (m, 3 H), 7.38 (dm, J = 7.8 Hz, 1 H), 7.72 (br s, 1 H, NH), 8.04 (dm, J = 8.0 Hz, 1 H), 8.19 (s, 1 H, CH=N). 13C NMR (100 MHz, CDCl3): δ = 13.7, 19.4, 22.2, 30.9, 78.1, 95.7, 112.8, 120.2, 122.4, 124.5, 127.8, 127.9, 129.3, 132.6, 136.0, 136.1, 144.6. HRMS (ESI): m/z calcd for C19H20N2H: 277.1705; found: 277.1699. Anal. Calcd for C19H20N2: C, 82.57; H, 7.29; N, 10.14. Found: C, 82.87; H, 7.48; N, 9.57.
8Preparation of 1-(2-Butyl-1 H -inden-1-ylidene)-2-phenylhydrazine (13a): Hydrazone 12a (0.28 g, 1.00 mmol) was added under argon to the solution of t-BuOK (0.22 g, 2.00 mmol) in DMF (5 mL) and the mixture was stirred at 50 °C until all starting hydrazone had disappeared (approx. 5 h, TLC monitoring). H2O (20 mL) was added and the mixture was extracted with Et2O (3 × 20 mL). The combined organic extracts were dried with MgSO4 and the residue was purified by flash chromatography (Et2O-pentane-Et3N, 0.5:10:0.2) giving 13a (0.07 g, 0.25 mmol, 25%) as a yellowish oil. FTIR (film): 2956 (s), 2927 (s), 1600 (s), 1566 (s), 1504 (s), 1494 (s), 1255 (s), 1207 (s), 1168 (s), 1151 (w), 1122 (m), 1093 (w) cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.00 (t, J = 7.1 Hz, 3 H), 1.43-1.52 (m, 2 H), 1.68-1.75 (m, 2 H), 2.66-2.69 (m, 2 H), 6.56 (s, 1 H), 7.03 (tt, J = 7.3, 1.0 Hz, 1 H), 7.17-7.40 (m, 7 H), 7.68 (d, J = 7.2 Hz, 1 H), 8.92 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.1, 22.7, 26.2, 31.4, 113.6, 121.0, 121.8, 122.7, 124.9, 126.1, 127.4, 128.8, 129.4, 143.9, 144.0, 144.1, 144.3. HRMS (ESI): m/z calcd for C19H20N2H: 277.1705; found: 277.1699. Anal. Calcd for C19H20N2: C, 82.57; H, 7.29; N, 10.14. Found: C, 82.64; H, 7.54; N, 9.62.
9CCDC 658782 contains the supplementary crystallographic data of picrate 13d·2,4,6-(O 2 N) 3 C 6 H 2 ( OH). These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033, E-mail: deposit@ccdc.cam.ac.uk].
10Preparation of 3-Butylisoquinoline (15): Hydrazone 12d (0.21 g, 1.00 mmol) was added under argon to the solution of t-BuOK (0.22 g, 2.00 mmol) in DMF (5 mL) and the mixture was stirred at r.t. until all starting hydrazone had disappeared (approx. 0.5 h, TLC monitoring). H2O (20 mL) was added and the mixture was extracted with Et2O (3 × 20 mL). The combined organic extracts were dried with MgSO4 and the residue was purified by flash chromatography (tert-butyl methyl ether) giving 15 (0.09 g, 0.47 mmol, 47%) as a yellow oil. All spectroscopic and physical data were in accordance with published data (see ref. 11).