Abstract
Condensation of nucleoside 3′-H-phosphonate monoesters with various thiols, promoted
by condensing agents, provides a convenient access to a new class of H-phosphonate
analogues, H-phosphonothiolate diesters. Chemical properties, relevant to possible
applications of these compounds as a new type of synthetic intermediates in the preparation
of nucleotide analogues bearing a sulfur atom at the bridging position of a phosphate
group, were investigated.
Key words
H-phosphonates - H-phosphonothiolates - phosphate analogues - nucleotide analogues
References and Notes
<A NAME="RG24907ST-1">1 </A>
Wilson C.
Keefe AD.
Curr. Opin. Chem. Biol.
2006,
10:
607
<A NAME="RG24907ST-2A">2a </A>
Tuschl T.
Thomson JB.
Eckstein F.
Curr. Opin. Struct. Biol.
1995,
5:
296
<A NAME="RG24907ST-2B">2b </A>
Eckstein F.
Antisense Nucleic Acid Drug Dev.
2000,
10:
117
<A NAME="RG24907ST-3">3 </A>
Eckstein F.
Gish G.
Trends Biochem. Sci.
1989,
14:
97
<A NAME="RG24907ST-4">4 </A>
Beaton G.
Brill WK.-D.
Grandas A.
Ma Y.-X.
Nielsen J.
Yau E.
Caruthers M.
Tetrahedron
1991,
47:
2377
<A NAME="RG24907ST-5">5 </A>
Stawinski J. In
Handbook of Organophosphorus Chemistry
Engel R.
Marcel Dekker;
New York:
1992.
p.377
<A NAME="RG24907ST-6">6 </A>
Beaucage SL.
Iyer RP.
Tetrahedron
1993,
49:
10441
<A NAME="RG24907ST-7">7 </A>
Horner L.
J. Prakt. Chem.
1992,
334:
645
<A NAME="RG24907ST-8">8 </A>
Åkerfeldt S.
Acta Chem. Scand.
1959,
13:
1479
<A NAME="RG24907ST-9">9 </A>
Åkerfeldt S.
Acta Chem. Scand.
1962,
16:
1897
<A NAME="RG24907ST-10">10 </A>
Xu Y.
Kool ET.
Nucleic Acids Res.
1998,
26:
3159
<A NAME="RG24907ST-11A">11a </A>
Cosstick R.
Vyle JS.
J. Chem. Soc., Chem. Commun.
1988,
992
<A NAME="RG24907ST-11B">11b </A>
Cosstick R.
Vyle JS.
Nucleic Acids Res.
1990,
18:
829
<A NAME="RG24907ST-11C">11c </A>
Mag M.
Lüking S.
Engels JW.
Nucleic Acids Res.
1991,
19:
1437
<A NAME="RG24907ST-12A">12a </A>
Garegg PJ.
Regberg T.
Stawinski J.
Strömberg R.
J. Chem. Soc., Perkin Trans. 1
1987,
1269
<A NAME="RG24907ST-12B">12b </A>
Liu XH.
Reese CB.
Tetrahedron Lett.
1995,
36:
3413
<A NAME="RG24907ST-12C">12c </A>
Weinstein LB.
Earnshaw DJ.
Cosstick R.
Cech TR.
J. Am. Chem. Soc.
1996,
118:
10341
<A NAME="RG24907ST-13">13 </A>
Cook AF.
J. Am. Chem. Soc.
1970,
92:
190
<A NAME="RG24907ST-14">14 </A>
Beevers APG.
Fettes KJ.
O’Neil IA.
Roberts SM.
Arnold JRP.
Cosstick R.
Fisher J.
Chem. Commun.
2002,
1458
<A NAME="RG24907ST-15">15 </A>
Cook AF.
Holman MJ.
Nussbaum AL.
J. Am. Chem. Soc.
1969,
91:
6479
<A NAME="RG24907ST-16">16 </A>
Åkerfeldt S.
Fagerlind L.
J. Med. Chem.
1967,
10:
115
<A NAME="RG24907ST-17">17 </A>
Padmanabhan S.
Coughlin JE.
Zhang GR.
Kirk CJ.
Iyer RP.
Bioorg. Med. Chem. Lett.
2006,
16:
1491
<A NAME="RG24907ST-18A">18a </A>
Kuimelis RG.
Mclaughlin LW.
J. Am. Chem. Soc.
1995,
117:
11019
<A NAME="RG24907ST-18B">18b </A>
Kuimelis RG.
McLaughlin LW.
Nucleic Acids Res.
1995,
23:
4753
<A NAME="RG24907ST-18C">18c </A>
Kuimelis RG.
McLaughlin LW.
Biochemistry
1996,
35:
5308
<A NAME="RG24907ST-19A">19a </A>
Stawinski J.
Kraszewski A.
Acc. Chem. Res.
2002,
35:
952
<A NAME="RG24907ST-19B">19b </A>
Kraszewski A.
Stawinski J.
Trends Org. Chem.
2003,
10:
1
<A NAME="RG24907ST-20A">20a </A>
Stawinski J.
Zain R.
Nucleosides Nucleotides
1995,
14:
711
<A NAME="RG24907ST-20B">20b </A>
Cieslak J.
Jankowska J.
Sobkowski M.
Kers A.
Kers I.
Stawinski J.
Kraszewski A.
Collect. Symp. Ser.
1999,
2:
63
<A NAME="RG24907ST-21">21 </A>
Cieslak J.
Jankowska J.
Stawinski J.
Kraszewski A.
J. Org. Chem.
2000,
65:
7049
<A NAME="RG24907ST-22">22 </A>
Compound 3 was obtained on independent way by reacting H-phosphonothiolate 2a with pivaloyl chloride in MeCN-pyridine (4:1). The signals of two P-diastereomers
were not resolved in the 31 P NMR spectrum.
<A NAME="RG24907ST-23">23 </A>
Ethyl H-phosphonate reacted with ethanethiol analogously to that of 1 , producing compound of type 4 (R = Et) that resonated at δ
P
= 157.8 ppm (3
J
PH = 9.4 Hz, hept). This compound was prepared independently by reacting ethyl phosphorodichloridite
with 2 equiv of ethanethiol in MeCN-pyridine (4:1).
<A NAME="RG24907ST-24">24 </A> Comparison with original sample obtained by reaction of 1 with phenol in the presence of pivaloyl chloride, followed by the addition of n -butylamine. See:
Kers A.
Stawinski J.
Kraszewski A.
Tetrahedron
1999,
55:
11579
<A NAME="RG24907ST-25">25 </A>
Comparison with original sample obtained by condensation of 1 with ethanol in the presence of pivaloyl chloride. The P-diastereomers were not resolved.
<A NAME="RG24907ST-26">26 </A>
Atherton FR.
Openshaw HT.
Todd AR.
J. Chem. Soc.
1945,
660
<A NAME="RG24907ST-27">27 </A>
Sekine M.
Satoh M.
Yamagata H.
Hata T.
J. Org. Chem.
1980,
45:
4162
<A NAME="RG24907ST-28">28 </A>
General Procedure for Synthesis and Oxidative Transformations of H-Phosphonothiolates
2a-d
Nucleoside H-phosphonate monoester 1 (0.15 mmol) was rendered anhydrous by evaporation of added pyridine, and the residue
was dissolved in MeCN-pyridine (4:1; 2 mL) or in CH2 Cl2 -pyridine (4:1; 2 mL, for thiols c and d ). To this solution, the appropriate thiol a -d (2 equiv) and a condensing agent (diphenyl phosphorochloridate; 1 equiv) were added.
The reactions were complete within 5 min (31 P NMR analysis) producing the expected nucleoside H-phosphonothiolates 2 .
³¹
P NMR Data for Compounds 2
Compound 2a : δ = 33.75 and 34.08 ppm (1
J
PH = 658.2 Hz, 3
J
PH = 11.1 Hz, dq); 2b : δ = 33.96 and 34.23 ppm (1
J
PH = 659.9 Hz, 3
J
PH = 10.7 Hz, dq); 2c : δ = 32.66 and 32.79 ppm (1
J
PH = 672.2 Hz, 3
J
PH = 10.7 Hz, dq); 2d : δ = 33.01 and 33.37 ppm (1
J
PH = 652.0 Hz, 3
J
PH = 11.4 Hz, dt). To the solution containing 2a -d , a mixture of CCl4 (10 equiv), H2 O (50 equiv), and Et3 N (2 equiv) was added. The reactions were complete within 5 min (31 P NMR analyses), producing quantitatively the corresponding phosphorothiolates 7a -d , that were isolated by silica gel column chromatography (purity >98%, 1 H NMR).
³¹
P NMR Data for Compounds 7
Compound 7a (82%): δ = 18.76 ppm (3
J
PH = 11.1 Hz, q); 7b (72%): δ = 18.99 ppm (3
J
PH = 11.1 Hz, q); 7c (64%): δ = 16.64 ppm (3
J
PH = 10.2 Hz, q); 7d (56%): δ = 19.86 ppm (3
J
PH = 10.1 Hz, t). Sulfurization of the in situ generated H-phosphonothiolates 2a -d was performed by the addition of elemental sulfur (3 equiv) and Et3 N (2 equiv) to the corresponding reaction mixtures. The reactions were complete within
5 min (31 P NMR analyses), affording quantitatively the corresponding phosphorodithioates 8a -d , that were isolated by silica gel column chromatography (purity >98%, 1 H NMR).
³¹
P NMR Data for Compounds 8
Compound 8a (67%): δ = 74.22 and 75.26 ppm (3
J
PH = 12.6 Hz, q); 8b (61%): δ = 74.39 and 75.26 ppm (3
J
PH = 12.7 Hz, q); 8c (65%): δ = 73.85 and 74.17 ppm (3
J
PH = 12.6 Hz, q); 8d (59%): δ = 74.54 and 76.35 ppm (3
J
PH = 12.9 Hz, t).
<A NAME="RG24907ST-29A">29a </A>
Gallagher MJ.
Garbutt R.
Liu YH.
Gum HL.
Phosphorus, Sulfur Silicon Relat. Elem.
1993,
75:
201
<A NAME="RG24907ST-29B">29b </A>
Kers A.
Kers I.
Stawinski J.
Sobkowski M.
Kraszewski A.
Tetrahedron
1996,
52:
9931
<A NAME="RG24907ST-30">30 </A>
Cieslak J.
Szymczak M.
Wenska M.
Stawinski J.
Kraszewski A.
J. Chem. Soc., Perkin Trans. 1
1999,
3327
<A NAME="RG24907ST-31A">31a </A>
Stawinski J.
Strömberg R. In
Current Protocols in Nucleic Acid Chemistry
Beaucage SL.
Bergstrom DE.
Glick GD.
Jones RA.
John Wiley and Sons, Inc.;
New York:
2001.
Chap. 2.6.1.
<A NAME="RG24907ST-31B">31b </A>
Stawinski J.
Strömberg R. In
Oligonucleotide Synthesis: Methods and Applications
Vol. 288:
Herdewijn P.
Humana Press;
Totowa NJ:
2004.
p.81