References and Notes
1a
Anastas PT.
Green Chem.
2003,
5:
G29
1b
Williamson TC.
Kirchhoff M.
Anastas PT.
Green Chem.
2000,
2:
G85
1c
Anastas PT.
Lankey RL.
Green Chem.
2000,
2:
289
1d
Clark JH.
Green Chem.
1999,
1:
1
2
Darensbourg DJ.
Holtcamp MW.
Coord. Chem. Rev.
1996,
153:
155
3
Shaikh A.-AG.
Sivaram S.
Chem. Rev.
1996,
96:
951
4
Yoshida M.
Ihara M.
Chem. Eur. J.
2004,
10:
2886
5
Clements JH.
Ind. Eng. Chem. Res.
2003,
42:
663
6
Parrish JP.
Salvatore RN.
Jung KW.
Tetrahedron
2000,
56:
8207
7
Peppel WJ.
Ind. Eng. Chem. Res.
1958,
50:
767
For examples of the coupling of CO2 and epoxides catalyzed by solid catalysts systems, see:
8a
Nishikubo T.
Kameyama A.
Yamashita J.
Tomoi M.
Fukuda W.
J. Polym. Sci., Part A: Polym. Chem.
1993,
31:
939
8b
Du Y.
Cai F.
Kong DL.
He LN.
Green Chem.
2005,
7:
518
8c
Tu M.
Davis RJ.
J. Catal.
2001,
199:
85
8d
Yasuda H.
He LN.
Sakadura T.
J. Catal.
2002,
209:
547
8e
Yasuda H.
He LN.
Sakadura T.
Stud. Surf. Sci. Catal.
2003,
145:
259
8f
Aresta M.
Dibenedetto A.
Gianfrate L.
Pastore C.
Appl. Catal. A: Gen.
2003,
255:
5
8g
Aresta M.
Dibenedetto A.
Gianfrate L.
Pastore C.
J. Mol. Catal. A: Chem.
2003,
204:
245
8h
Yano T.
Matsui H.
Koike T.
Isighuro H.
Fujihara H.
Yoshihara M.
Maeshima T.
Chem. Commun.
1997,
1229
8i
Bhanage BM.
Fujita S.
Ikushima Y.
Arai M.
Appl. Catal. A: Gen.
2001,
219:
259
8j
Yamaguchi K.
Ebitani K.
Yoshida T.
Yoshida H.
Kaneda K.
J. Am. Chem. Soc.
1999,
121:
4526
8k
Xiao LF.
Li FW.
Xia CG.
Appl. Catal. A: Gen.
2005,
279:
125
8l
Aresta M.
Dibenedetto A.
Gianfrate L.
Pastore C.
J. Mol. Catal. A: Chem.
2003,
204:
245
8m
Kim HS.
Kim JJ.
Kwon HN.
Chung MJ.
Lee BG.
Jang HG.
J. Catal.
2002,
205:
226
8n
Shi F.
Zhang Q.
He Y.
Deng Y.
J. Am. Chem. Soc.
2005,
127:
4182
8o
Srivastava R.
Srinivas D.
Ratnasamy P.
J. Catal.
2005,
233:
1
8p
Xie HB.
Duan HF.
Li SH.
Zhang SB.
New J. Chem.
2005,
29:
1199
8q
Barbarini A.
Maggii R.
Mazzacani A.
Mori G.
Sartori G.
Sartorio R.
Tetrahedron Lett.
2003,
44:
2931
8r
Wang JQ.
Kong DL.
Chen JY.
Cai F.
He LN.
J. Mol. Catal. A: Chem.
2006,
249:
143
8s
Takahashi T.
Watahiki T.
Kitazume S.
Yasuda H.
Sakakura T.
Chem. Commun.
2006,
1664
8t
Wang JQ.
Yue XD.
Cai F.
He LN.
Catal. Commun.
2007,
8:
167
8u
Zhao Y.
Tian JS.
Qi XH.
Han ZN.
Zhang YY.
He LN.
J. Mol. Catal. A: Chem.
2007,
271:
284
8v
Srivastava R.
Srinivas D.
Ratnasamy P.
Appl. Catal. A: Gen.
2005,
289:
128
8w
Zhu AL.
Jiang T.
Han BX.
Zhang JC.
Xie Y.
Ma XM.
Green Chem.
2007,
9:
169
For recent reports concerning the properties and applications of PEGs, see:
9a
Heldebrant DJ.
Jessop PG.
J. Am. Chem. Soc.
2003,
125:
5600
9b
Annunziata R.
Benaglia M.
Cinquini M.
Cozzi F.
Tocco G.
Org. Lett.
2000,
2:
1737
9c
Reetz MT.
Wiesenhöfer W.
Chem. Commun.
2004,
2750
9d
Chen J.
Spear SK.
Huddleston JG.
Rogers RD.
Green Chem.
2005,
7:
64 ; and references cited therein
9e
Chandrasekhar S.
Narsihmulu C.
Sultana SS.
Reddy NR.
Chem. Commun.
2003,
1716
9f
Solinas M.
Jiang J.
Stelzer O.
Leitner W.
Angew. Chem. Int. Ed.
2005,
44:
2291
9g
Hou Z.
Theyssen N.
Brinkmann A.
Leitner W.
Angew. Chem. Int. Ed.
2005,
44:
1346
9h
Cernovska K.
Kemter M.
Gallmeier H.-C.
Rzepecki P.
Schrader T.
König B.
Org. Biomol. Chem.
2004,
2:
1603
9i
Attanasi OA.
Crescentini LD.
Favi G.
Filippone P.
Lillini S.
Mantellini F.
Santeusanio S.
Org. Lett.
2005,
7:
2469
9j
Jessop P.
Wyne DC.
DeHaai S.
Nakawatase D.
Chem. Commun.
2000,
693
9k
Du Y.
Wang JQ.
Chen JY.
Cai F.
Tian JS.
Kong DL.
He LN.
Tetrahedron Lett.
2006,
47:
1271
For the properties and applications of ionic liquids, see:
10a
Holbrey JD.
Seddon KR.
Clean Prod. Process.
1999,
1:
223
10b
Welton T.
Chem. Rev.
1999,
99:
2071
10c
Gordon CM.
Appl. Catal. A: Gen.
2001,
222:
101
10d
Wasserscheid P.
Keim W.
Angew. Chem. In. Ed.
2000,
39:
3772
10e
Sheldon R.
Chem. Commun.
2001,
2399
10f
Earle MJ.
Seddon KR.
Pure Appl. Chem.
2000,
72:
1391
10g
Dupont J.
de Souza RF.
Suarez PAZ.
Chem. Rev.
2002,
102:
3667
10h
Zhao DB.
Wu M.
Kou Y.
Min EZ.
Catal. Today
2002,
74:
157
10i
Anthony JL.
Maginn EJ.
Brennecke JF.
J. Phys. Chem. B.
2002,
106:
7315
10j
Zhang SJ.
Chen YH.
Li FW.
Lu XM.
Dai WB.
Mori R.
Catal. Today
2006,
115:
61
10k
Xie HB.
Li SH.
Zhang SB.
J. Mol. Catal. A: Chem.
2006,
250:
30
10l
Li H.
Wu J.
Brunel S.
Monnet C.
Baudry R.
Perchec PL.
Ind. Eng. Chem. Res.
2005,
44:
8641
10m
Violleau F.
Thiehaud-Roux S.
Borredon E.
Gars LP.
Tetrahedron
2002,
58:
8607
10n
Xie HB.
Zhang SB.
Duan HF.
Tetrahedron Lett.
2004,
45:
1271
10o
Duan HF.
Li SH.
Li YJ.
Xie HB.
Zhang SB.
Wang ZM.
Chem. Res. Chin. Univ.
2004,
20:
568
11
Annunziata R.
Benaglia M.
Cinquini M.
Cozzi F.
Tocco G.
Org. Lett.
2000,
2:
1737
12a
Pruszynski P.
Can. J. Chem.
1987,
65:
626
12b
Duan HF.
Zhang SB.
Lin YJ.
Qiu ZM.
Wang ZM.
Chem. J. Chin. Univ.
2003,
24:
2024
13 The pentaalkylguanidine 3 was synthesized from 1,3-dimethylimidazolidin-2-one(1), POCl3 and BuNH2 by the methods reported in the literature;12b colorless liquid; yield: 71% (lit.12b 85%). 1H NMR (300 MHz, CDCl3): δ = 0.91 (t, J = 14.4 Hz, 3 H, Me), 1.33-1.41 (m, 2 H, CH2), 1.48-1.58 (m, 2 H, CH2), 2.79 (s, 6 H, Me), 3.14 (s, 4 H, NCH2), 3.34 (s, 2 H, CH2).
14
Procedure for the Synthesis of PEG-Supported Guanidinium Bromide 4: To a solution of polyethylene glycol bromide (12 g, 0.002 mol) in toluene (150 mL), pentaalkylguanidine 3 (3.38 g, 0.02 mol) was added, and the resulting solution was stirred at 65 °C for 72 h. After the reaction was completed, the solvent was removed under reduced pressure, and then anhyd Et2O (40 mL) was added. The product was precipitated and isolated by filtration, then washed by anhyd Et2O and dried to obtain the product 4 (94%); white powder; mp 53-55 °C. IR: 1638 (C=N) cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.89 (t, J = 14.7 Hz, 6 H, 2 × Me), 1.29-1.36 (m, 4 H, 2 × CH2), 1.62-1.72 (m, 4 H, 2 × CH2), 3.11 (s, 6 H, 2 × Me), 3.60 (m, 4 H, OCH2CH2O). 13C NMR (75 MHz, CDCl3): δ = 13.08, 19.13, 31.69, 34.85, 43.08, 49.02, 69.90, 158.72.
15
Representative Procedure for the Cycloaddition Reaction of Epoxide with CO
2
: In a 25-mL inner volume stainless-steel autoclave equipped with a magnetic stirrer, isopropyl glycidyl ether (15.8 mmol) and PEG-supported hexaalkylguanidinium bromide (0.5 mol%) were added, and CO2 (liquid, 3.0 MPa) was charged into the reactor at r.t. The initial pressure was generally adjusted to 4 MPa at 110 °C. The reactor was heated at that temperature for 4 h. After cooling, the products were separated by adding Et2O and analyzed by a gas chromatograph (Shimadzu GC-2014) equipped with a capillary column (RTX-5, 30 m × 0.25 µm) using a flame ionization detector and the side-products were detected by GC-MS. All of the products were further identified using GC-MS by comparing the retention times and fragmentation patterns with authentic samples. The structures of the isolated products were also characterized by 1H NMR and 13C NMR spectroscopy. Spectral characteristics of cyclic carbonates shown in Table
[2]
are as follows:
4-Methyl-1,3-dioxolan-2-one (6a): 1H NMR (400 MHz, CDCl3): δ = 1.43 (d, J = 6.0 Hz, 3 H, Me), 3.98 (t, J = 8.4 Hz, 1 H, OCH2), 4.51 (t, J = 8.4 Hz, 1 H, OCH2), 4.82 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 19.15, 70.53, 73.49, 154.95. 1,3-Dioxolan-2-one (6b): 1H NMR (400 MHz, CDCl3): δ = 4.50 (s, 4 H, OCH2). 13C NMR (100.4 MHz, CDCl3): δ = 64.62, 155.55. 4-Phenyl-1,3-dioxolan-2-one (6c): 1H NMR (400 MHz, CDCl3): δ = 4.35 (t, J = 8.4 Hz, 1 H, OCH2), 4.80 (t, J = 8.4 Hz, 1 H, OCH2), 5.70 (t, J = 8.0 Hz, 1 H, OCH), 7.36 (d, J = 7.6 Hz, 2 H, Ph), 7.44 (d, J = 6.4 Hz, 3 H, Ph). 13C NMR (100.4 MHz, CDCl3): δ = 71.12, 77.95, 125.83, 129.22, 129.71, 135.78, 154.76.
4-Chloromethyl-1,3-dioxolan-2-one (6d): 1H NMR (400 MHz, CDCl3): δ = 3.71 (dd, J = 3.2, 12.0 Hz, 1 H, ClCH2), 3.80 (dd, J = 5.2, 12.0 Hz, 1 H, ClCH2), 4.39 (dd, J = 6.0, 8.4 Hz, 1 H, OCH2), 4.58 (t, J = 8.4 Hz, 1 H, OCH2), 4.98 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 43.84, 66.83, 74.29, 154.28. 4-Isopropoxy-1,3-dioxolan-2-one (6e): 1H NMR (400 MHz, CDCl3): δ = 1.08 (t, J = 6.4 Hz, 6 H, 2 × Me), 3.51-3.62 (m, 3 H, CHO, CH2O), 4.30 (dd, J = 8.0, 15.6 Hz, 1 H, OCH2), 4.42 (dd, J = 8.0, 15.6 Hz, 1 H, OCH2), 4.74 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 21.53, 21.65, 66.16, 66.89, 72.59, 75.18, 155.03.
4-Phenoxymethyl-1,3-dioxolan-2-one (6f): 1H NMR (400 MHz, CDCl3): δ = 4.15 (dd, J = 4.4, 10.8 Hz, 1 H, OCH2), 4.24 (dd, J = 3.6, 10.8 Hz, 1 H, OCH2), 4.55 (dd, J = 6.0, 8.4 Hz, 1 H, PhOCH2), 4.62 (t, J = 8.4 Hz, 1 H, PhOCH2), 5.03 (m, 1 H, OCH), 6.91 (d, J = 8.0 Hz, 2 H, Ph), 7.02 (t, J = 7.4 Hz, 1 H, Ph), 7.31 (t, J = 8.0 Hz, 2 H, Ph). 13C NMR (100.4 MHz, CDCl3): δ = 66.17, 68.84, 74.11, 114.57, 121.92, 129.63, 154.65, 157.71.
16
Extraction Procedure with Et
2
O: After addition of Et2O (3 × 4 mL) to the resulting mixture upon completion of the reaction, the PEG-guanidinium bromide was solidified when cooled to -20 °C to -10 °C, followed by simple decantation of the Et2O phase containing the products, thus allowing the catalyst to be recycled. The combined extracts were dried over MgSO4 and concentrated in vacuo to give the product cyclic carbonate. We conducted further reaction by the addition of successive portions of the epoxide to the recovered catalyst under identical reaction conditions.