RSS-Feed abonnieren
DOI: 10.1055/s-2007-992362
Guanidinium Salt Functionalized PEG: An Effective and Recyclable Homo-geneous Catalyst for the Synthesis of Cyclic Carbonates from CO2 and Epoxides under Solvent-Free Conditions
Publikationsverlauf
Publikationsdatum:
08. November 2007 (online)
Abstract
A guanidinium bromide covalently bound to CO2-philic polyethylene glycol (PEG) is proved to be a highly effective homogeneous catalyst for the eco-friendly synthesis of cyclic carbonates from carbon dioxide and epoxides under mild conditions, which requires no additional organic solvents or co-catalyst. Notably, it has been found that there is a pronouncedly cooperative effect between the catalyst part and the support part. Moreover, the catalyst is able to be reused with retention of high catalytic activity and selectivity. This process looks promising as a strategy for homogeneous catalyst recycling.
Key words
guanidinium bromide - functionalized polyethylene glycol - carbon dioxide - epoxide - cycloaddition
-
1a
Anastas PT. Green Chem. 2003, 5: G29 -
1b
Williamson TC.Kirchhoff M.Anastas PT. Green Chem. 2000, 2: G85 -
1c
Anastas PT.Lankey RL. Green Chem. 2000, 2: 289 -
1d
Clark JH. Green Chem. 1999, 1: 1 - 2
Darensbourg DJ.Holtcamp MW. Coord. Chem. Rev. 1996, 153: 155 - 3
Shaikh A.-AG.Sivaram S. Chem. Rev. 1996, 96: 951 - 4
Yoshida M.Ihara M. Chem. Eur. J. 2004, 10: 2886 - 5
Clements JH. Ind. Eng. Chem. Res. 2003, 42: 663 - 6
Parrish JP.Salvatore RN.Jung KW. Tetrahedron 2000, 56: 8207 - 7
Peppel WJ. Ind. Eng. Chem. Res. 1958, 50: 767 - For examples of the coupling of CO2 and epoxides catalyzed by solid catalysts systems, see:
-
8a
Nishikubo T.Kameyama A.Yamashita J.Tomoi M.Fukuda W.
J. Polym. Sci., Part A: Polym. Chem. 1993, 31: 939 -
8b
Du Y.Cai F.Kong DL.He LN. Green Chem. 2005, 7: 518 -
8c
Tu M.Davis RJ. J. Catal. 2001, 199: 85 -
8d
Yasuda H.He LN.Sakadura T. J. Catal. 2002, 209: 547 -
8e
Yasuda H.He LN.Sakadura T. Stud. Surf. Sci. Catal. 2003, 145: 259 -
8f
Aresta M.Dibenedetto A.Gianfrate L.Pastore C. Appl. Catal. A: Gen. 2003, 255: 5 -
8g
Aresta M.Dibenedetto A.Gianfrate L.Pastore C. J. Mol. Catal. A: Chem. 2003, 204: 245 -
8h
Yano T.Matsui H.Koike T.Isighuro H.Fujihara H.Yoshihara M.Maeshima T. Chem. Commun. 1997, 1229 -
8i
Bhanage BM.Fujita S.Ikushima Y.Arai M. Appl. Catal. A: Gen. 2001, 219: 259 -
8j
Yamaguchi K.Ebitani K.Yoshida T.Yoshida H.Kaneda K. J. Am. Chem. Soc. 1999, 121: 4526 -
8k
Xiao LF.Li FW.Xia CG. Appl. Catal. A: Gen. 2005, 279: 125 -
8l
Aresta M.Dibenedetto A.Gianfrate L.Pastore C. J. Mol. Catal. A: Chem. 2003, 204: 245 -
8m
Kim HS.Kim JJ.Kwon HN.Chung MJ.Lee BG.Jang HG. J. Catal. 2002, 205: 226 -
8n
Shi F.Zhang Q.He Y.Deng Y. J. Am. Chem. Soc. 2005, 127: 4182 -
8o
Srivastava R.Srinivas D.Ratnasamy P. J. Catal. 2005, 233: 1 -
8p
Xie HB.Duan HF.Li SH.Zhang SB. New J. Chem. 2005, 29: 1199 -
8q
Barbarini A.Maggii R.Mazzacani A.Mori G.Sartori G.Sartorio R. Tetrahedron Lett. 2003, 44: 2931 -
8r
Wang JQ.Kong DL.Chen JY.Cai F.He LN. J. Mol. Catal. A: Chem. 2006, 249: 143 -
8s
Takahashi T.Watahiki T.Kitazume S.Yasuda H.Sakakura T. Chem. Commun. 2006, 1664 -
8t
Wang JQ.Yue XD.Cai F.He LN. Catal. Commun. 2007, 8: 167 -
8u
Zhao Y.Tian JS.Qi XH.Han ZN.Zhang YY.He LN. J. Mol. Catal. A: Chem. 2007, 271: 284 -
8v
Srivastava R.Srinivas D.Ratnasamy P. Appl. Catal. A: Gen. 2005, 289: 128 -
8w
Zhu AL.Jiang T.Han BX.Zhang JC.Xie Y.Ma XM. Green Chem. 2007, 9: 169 - For recent reports concerning the properties and applications of PEGs, see:
-
9a
Heldebrant DJ.Jessop PG. J. Am. Chem. Soc. 2003, 125: 5600 -
9b
Annunziata R.Benaglia M.Cinquini M.Cozzi F.Tocco G. Org. Lett. 2000, 2: 1737 -
9c
Reetz MT.Wiesenhöfer W. Chem. Commun. 2004, 2750 -
9d
Chen J.Spear SK.Huddleston JG.Rogers RD. Green Chem. 2005, 7: 64 ; and references cited therein -
9e
Chandrasekhar S.Narsihmulu C.Sultana SS.Reddy NR. Chem. Commun. 2003, 1716 -
9f
Solinas M.Jiang J.Stelzer O.Leitner W. Angew. Chem. Int. Ed. 2005, 44: 2291 -
9g
Hou Z.Theyssen N.Brinkmann A.Leitner W. Angew. Chem. Int. Ed. 2005, 44: 1346 -
9h
Cernovska K.Kemter M.Gallmeier H.-C.Rzepecki P.Schrader T.König B. Org. Biomol. Chem. 2004, 2: 1603 -
9i
Attanasi OA.Crescentini LD.Favi G.Filippone P.Lillini S.Mantellini F.Santeusanio S. Org. Lett. 2005, 7: 2469 -
9j
Jessop P.Wyne DC.DeHaai S.Nakawatase D. Chem. Commun. 2000, 693 -
9k
Du Y.Wang JQ.Chen JY.Cai F.Tian JS.Kong DL.He LN. Tetrahedron Lett. 2006, 47: 1271 - For the properties and applications of ionic liquids, see:
-
10a
Holbrey JD.Seddon KR. Clean Prod. Process. 1999, 1: 223 -
10b
Welton T. Chem. Rev. 1999, 99: 2071 -
10c
Gordon CM. Appl. Catal. A: Gen. 2001, 222: 101 -
10d
Wasserscheid P.Keim W. Angew. Chem. In. Ed. 2000, 39: 3772 -
10e
Sheldon R. Chem. Commun. 2001, 2399 -
10f
Earle MJ.Seddon KR. Pure Appl. Chem. 2000, 72: 1391 -
10g
Dupont J.de Souza RF.Suarez PAZ. Chem. Rev. 2002, 102: 3667 -
10h
Zhao DB.Wu M.Kou Y.Min EZ. Catal. Today 2002, 74: 157 -
10i
Anthony JL.Maginn EJ.Brennecke JF. J. Phys. Chem. B. 2002, 106: 7315 -
10j
Zhang SJ.Chen YH.Li FW.Lu XM.Dai WB.Mori R. Catal. Today 2006, 115: 61 -
10k
Xie HB.Li SH.Zhang SB. J. Mol. Catal. A: Chem. 2006, 250: 30 -
10l
Li H.Wu J.Brunel S.Monnet C.Baudry R.Perchec PL. Ind. Eng. Chem. Res. 2005, 44: 8641 -
10m
Violleau F.Thiehaud-Roux S.Borredon E.Gars LP. Tetrahedron 2002, 58: 8607 -
10n
Xie HB.Zhang SB.Duan HF. Tetrahedron Lett. 2004, 45: 1271 -
10o
Duan HF.Li SH.Li YJ.Xie HB.Zhang SB.Wang ZM. Chem. Res. Chin. Univ. 2004, 20: 568 - 11
Annunziata R.Benaglia M.Cinquini M.Cozzi F.Tocco G. Org. Lett. 2000, 2: 1737 -
12a
Pruszynski P. Can. J. Chem. 1987, 65: 626 -
12b
Duan HF.Zhang SB.Lin YJ.Qiu ZM.Wang ZM. Chem. J. Chin. Univ. 2003, 24: 2024
References and Notes
The pentaalkylguanidine 3 was synthesized from 1,3-dimethylimidazolidin-2-one(1), POCl3 and BuNH2 by the methods reported in the literature;12b colorless liquid; yield: 71% (lit.12b 85%). 1H NMR (300 MHz, CDCl3): δ = 0.91 (t, J = 14.4 Hz, 3 H, Me), 1.33-1.41 (m, 2 H, CH2), 1.48-1.58 (m, 2 H, CH2), 2.79 (s, 6 H, Me), 3.14 (s, 4 H, NCH2), 3.34 (s, 2 H, CH2).
14Procedure for the Synthesis of PEG-Supported Guanidinium Bromide 4: To a solution of polyethylene glycol bromide (12 g, 0.002 mol) in toluene (150 mL), pentaalkylguanidine 3 (3.38 g, 0.02 mol) was added, and the resulting solution was stirred at 65 °C for 72 h. After the reaction was completed, the solvent was removed under reduced pressure, and then anhyd Et2O (40 mL) was added. The product was precipitated and isolated by filtration, then washed by anhyd Et2O and dried to obtain the product 4 (94%); white powder; mp 53-55 °C. IR: 1638 (C=N) cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.89 (t, J = 14.7 Hz, 6 H, 2 × Me), 1.29-1.36 (m, 4 H, 2 × CH2), 1.62-1.72 (m, 4 H, 2 × CH2), 3.11 (s, 6 H, 2 × Me), 3.60 (m, 4 H, OCH2CH2O). 13C NMR (75 MHz, CDCl3): δ = 13.08, 19.13, 31.69, 34.85, 43.08, 49.02, 69.90, 158.72.
15
Representative Procedure for the Cycloaddition Reaction of Epoxide with CO
2
: In a 25-mL inner volume stainless-steel autoclave equipped with a magnetic stirrer, isopropyl glycidyl ether (15.8 mmol) and PEG-supported hexaalkylguanidinium bromide (0.5 mol%) were added, and CO2 (liquid, 3.0 MPa) was charged into the reactor at r.t. The initial pressure was generally adjusted to 4 MPa at 110 °C. The reactor was heated at that temperature for 4 h. After cooling, the products were separated by adding Et2O and analyzed by a gas chromatograph (Shimadzu GC-2014) equipped with a capillary column (RTX-5, 30 m × 0.25 µm) using a flame ionization detector and the side-products were detected by GC-MS. All of the products were further identified using GC-MS by comparing the retention times and fragmentation patterns with authentic samples. The structures of the isolated products were also characterized by 1H NMR and 13C NMR spectroscopy. Spectral characteristics of cyclic carbonates shown in Table
[2]
are as follows:
4-Methyl-1,3-dioxolan-2-one (6a): 1H NMR (400 MHz, CDCl3): δ = 1.43 (d, J = 6.0 Hz, 3 H, Me), 3.98 (t, J = 8.4 Hz, 1 H, OCH2), 4.51 (t, J = 8.4 Hz, 1 H, OCH2), 4.82 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 19.15, 70.53, 73.49, 154.95. 1,3-Dioxolan-2-one (6b): 1H NMR (400 MHz, CDCl3): δ = 4.50 (s, 4 H, OCH2). 13C NMR (100.4 MHz, CDCl3): δ = 64.62, 155.55. 4-Phenyl-1,3-dioxolan-2-one (6c): 1H NMR (400 MHz, CDCl3): δ = 4.35 (t, J = 8.4 Hz, 1 H, OCH2), 4.80 (t, J = 8.4 Hz, 1 H, OCH2), 5.70 (t, J = 8.0 Hz, 1 H, OCH), 7.36 (d, J = 7.6 Hz, 2 H, Ph), 7.44 (d, J = 6.4 Hz, 3 H, Ph). 13C NMR (100.4 MHz, CDCl3): δ = 71.12, 77.95, 125.83, 129.22, 129.71, 135.78, 154.76.
4-Chloromethyl-1,3-dioxolan-2-one (6d): 1H NMR (400 MHz, CDCl3): δ = 3.71 (dd, J = 3.2, 12.0 Hz, 1 H, ClCH2), 3.80 (dd, J = 5.2, 12.0 Hz, 1 H, ClCH2), 4.39 (dd, J = 6.0, 8.4 Hz, 1 H, OCH2), 4.58 (t, J = 8.4 Hz, 1 H, OCH2), 4.98 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 43.84, 66.83, 74.29, 154.28. 4-Isopropoxy-1,3-dioxolan-2-one (6e): 1H NMR (400 MHz, CDCl3): δ = 1.08 (t, J = 6.4 Hz, 6 H, 2 × Me), 3.51-3.62 (m, 3 H, CHO, CH2O), 4.30 (dd, J = 8.0, 15.6 Hz, 1 H, OCH2), 4.42 (dd, J = 8.0, 15.6 Hz, 1 H, OCH2), 4.74 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 21.53, 21.65, 66.16, 66.89, 72.59, 75.18, 155.03.
4-Phenoxymethyl-1,3-dioxolan-2-one (6f): 1H NMR (400 MHz, CDCl3): δ = 4.15 (dd, J = 4.4, 10.8 Hz, 1 H, OCH2), 4.24 (dd, J = 3.6, 10.8 Hz, 1 H, OCH2), 4.55 (dd, J = 6.0, 8.4 Hz, 1 H, PhOCH2), 4.62 (t, J = 8.4 Hz, 1 H, PhOCH2), 5.03 (m, 1 H, OCH), 6.91 (d, J = 8.0 Hz, 2 H, Ph), 7.02 (t, J = 7.4 Hz, 1 H, Ph), 7.31 (t, J = 8.0 Hz, 2 H, Ph). 13C NMR (100.4 MHz, CDCl3): δ = 66.17, 68.84, 74.11, 114.57, 121.92, 129.63, 154.65, 157.71.
Extraction Procedure with Et 2 O: After addition of Et2O (3 × 4 mL) to the resulting mixture upon completion of the reaction, the PEG-guanidinium bromide was solidified when cooled to -20 °C to -10 °C, followed by simple decantation of the Et2O phase containing the products, thus allowing the catalyst to be recycled. The combined extracts were dried over MgSO4 and concentrated in vacuo to give the product cyclic carbonate. We conducted further reaction by the addition of successive portions of the epoxide to the recovered catalyst under identical reaction conditions.