Subscribe to RSS
DOI: 10.1055/s-2007-992368
Synthesis of 2-Amino-5-arylthiazoles by Palladium-Catalyzed Arylation at the C5 Position with Aryl Iodides
Publication History
Publication Date:
08 November 2007 (online)

Abstract
A new synthetic route to afford 2-amino-5-aryl thiazoles has been developed. The starting aminothiazole derivative can be arylated at position 5 with aryl iodides under palladium-catalyzed conditions. Mechanistic studies suggest a proton-abstraction pathway for this transformation.
Key words
palladium - catalysis - cross-coupling - heterocycles - Heck reaction
-
1a
Kalgutkar AS.Crews BC.Marnett L. J. Biochem. 1996, 35: 9076 -
1b
Dondoni A. Comprehensive Chemistry II Vol. 3:Shinkai I. Pergamon; Glasgow: 1996. p.373 -
1c
Hutchinson I.Stevens MFG.Westwell AD. Tetrahedron Lett. 2000, 41: 425 -
2a
Schwander H. In Ullman’s Encyclopedia of Industrial Chemistry Vol. A11: VCH; Weinheim: 1988. p.279 -
2b
Mori A.Sekiguchi A.Masui K.Shimada T.Horie M.Osakada K.Kawamoto M.Ikeda T. J. Am. Chem. Soc. 2003, 125: 1700 -
3a
Dölling K.Zaschke H.Schubert H. J. Prakt. Chem. 1979, 321: 643 -
3b
See also ref. 2b.
-
4a
Hassan J.Sévignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
4b
Anastasia L.Negishi E. In Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E. Wiley; New York: 2002. p.311 - For recent reviews, see:
-
5a
Dyker G. Angew. Chem. Int. Ed. 1999, 38: 1698 -
5b
Miura M.Nomura M. Top. Curr. Chem. 2002, 219: 211 -
5c
Wolfe JP.Thomas JS. Curr. Org. Chem. 2005, 9: 625 -
6a
Manolova P.Zhelyazkov L.Vodenicharov R. Farmatsiya 1980, 30: 9 -
6b
Volmajer J.Toplak R.Bittner S.Majcen Le Marechal A. ARKIVOC 2003, (xiv): 49 - For Pd-catalyzed direct arylation of thiazoles, see:
-
7a
Pivsa-Art S.Satoh T.Awamura Y.Miura M.Nomura M. Bull. Chem. Soc. Jpn. 1998, 71: 467 -
7b
Yokooji A.Okazawa T.Satoh T.Miura M.Nomura M. Tetrahedron 2003, 59: 5685 -
7c
Masui K.Mori A.Okano K.Takamura K.Kinoshita M.Ikeda T. Org. Lett. 2004, 6: 2011 -
7d
Parisien M.Valette D.Fagnou K. J. Org. Chem. 2005, 70: 7578 -
7e
Bellina F.Cauteruccio S.Rossi R. Eur. J. Org. Chem. 2006, 1379 -
7f
See also ref. 2b.
- 8 For a recent review, see:
Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174 - 11 A similar effect was observed by Li et al.:
Li W.Nelson DP.Jensen MS.Hoerrner RS.Javadi GJ.Cai D.Larsen RD. Org. Lett. 2003, 5: 4835 -
13a
Grigg R.Sridharan V.Stevenson P.Sukirthalingam S.Worakum T. Tetrahedron 1990, 46: 4003 -
13b
Hughes CC.Trauner D. Angew. Chem. Int. Ed. 2002, 41: 1569 -
13c
Lautens M.Fang Y.-Q. Org. Lett. 2003, 5: 3679 -
13d
Glover B.Harvey KA.Liu B.Sharp MJ.Tymoschenko M. Org. Lett. 2003, 5: 301 -
14a
Catellani M.Chiusoli GP. J. Organomet. Chem. 1992, 425: 151 -
14b
Martín-Matute B.Mateo C.Cárdenas DJ.Echavarren AM. Chem. Eur. J. 2001, 7: 2341 -
14c
Lane BS.Sames D. Org. Lett. 2004, 6: 2897 -
14d
Lane BS.Brown MA.Sames D. J. Am. Chem. Soc. 2005, 127: 8050 - 15
Park C.-H.Ryabova V.Seregin IV.Sromek AW.Gevorgyan V. Org. Lett. 2004, 6: 1159 - 16 Calculations were done using Maestro Version 7.5.112 and Jaguar Version 6.5, Schrödinger, LLC., Portland, Oregon:
Vacek G.Perry JK.Langlois J.-M. Chem. Phys. Lett. 1999, 310: 189 -
17a
Lee C.Parr RG.Yang W. Phys. Rev. 1988, 37: B785 -
17b
Becke AD. J. Phys. Chem. 1993, 98: 5648 -
17c
Stephens PJ.Devlin FJ.Chabalowski CF.Frisch MJ. J. Phys. Chem. 1994, 98: 11623 - 18
García-Cuadrado D.Braga AA.Maseras F.Echavarren AM. J. Am. Chem. Soc. 2006, 128: 1066 - A similar mechanism has also been recently proposed by Fagnou et al.:
-
19a
Lafrance M.Rowley CN.Woo TK.Fagnou K. J. Am. Chem. Soc. 2006, 128: 8754 - See also other recent examples:
-
19b
Campeau L.-C.Parisien M.Leblanc M.Fagnou K. J. Am. Chem. Soc. 2004, 126: 9186 -
19c
Parisien M.Valette D.Fagnou K. J. Org. Chem. 2005, 70: 7578 -
19d
Campeau L.-C.Parisien M.Jean A.Fagnou K. J. Am. Chem. Soc. 2006, 128: 581 - 20 See kinetic isotope effects of C-H functionalization in:
Hennessy EJ.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 12084 - Recent DFT calculations in cross-coupling reactions:
-
21a
Goossen LJ.Koley D.Hermann HL.Thiel W. J. Am. Chem. Soc. 2005, 127: 11102 -
21b
Braga AAC.Morgon NH.Ujaque G.Maseras F. J. Am. Chem. Soc. 2005, 127: 9298 -
21c
Mota AJ.Dedieu A.Bour C.Suffert J. J. Am. Chem. Soc. 2005, 127: 7171 - Recent examples:
-
22a
Pivsa-Art S.Satoh T.Awamura Y.Miura M.Nomura M. Bull. Chem. Soc. Jpn. 1998, 71: 467 -
22b
See also ref. 14c,d, 15.
References and Notes
The Pd-coupling reaction with free 2-aminothiazole provided the corresponding amination product.
10Lower yields were obtained with bidentate phosphine ligands, such as XantPhos (4,5-bis-diphenylphosphanyl-9,9-dimethyl-9H-xanthene, 64%), BINAP (60%) or DPPF [1,1′-bis(diphenylphosphino)ferrocene, 58%].
12
Typical Experimental Procedure
A 16 × 100 tube was charged with thiazole 2 (0.37 mmol), aryl iodide (0.55 mmol), Cs2CO3 (0.239 g, 0.73 mmol), Pd(OAc)2 (0.004 g, 5 mol%, 0.02 mmol), ligand 7 (0.014 g, 10 mol%, 0.04 mmol) and DMF (2 mL, 0.2 M). The resulting mixture was stirred at 120 °C for 24 h under a nitrogen atmosphere. The mixture was then filtered through Celite and concentrated to dryness. The residue was purified first on silica gel (4:1 hexane-EtOAc) and then with an HLB cartridge [using NH4HCO3 (pH 10) and MeCN as eluents]. Next, the compound was dissolved in CH2CH2 (1 mL) and TFA in CH2CH2 (25%, 1 mL) was added. The corresponding solution was shaken on an arm shaker overnight. After that, the mixture was concentrated to dryness, dissolved in MeOH, passed through an SCX-2 cartridge; two volumes of MeOH and two volumes of NH3-MeOH (2 N) were eluted. The NH3-MeOH washings were concentrated to dryness to afford the desired compound.
2-Amino-5-phenylthiazole-4-carboxylic acid ethyl ester (4a): white solid (73 mg, 80%). 1H NMR (300 MHz, CDCl3): δ = 7.47-7.38 (m, 5 H), 5.48-5.39 (m, 2 H), 4.23 (q, J = 7.1 Hz, 2 H), 1.19 (t, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 163.91, 160.92, 135.83, 134.10, 129.81, 129.02, 127.62, 126.99, 59.99, 13.02.