Subscribe to RSS
DOI: 10.1055/s-2008-1027600
© Georg Thieme Verlag KG Stuttgart · New York
Oxidativer Stress am retinalen Pigmentepithel – experimentelle Ansätze zur Protektion
Oxidative Stress at the Retinal Pigment Epithelium – Experimental Implications for ProtectionPublication History
Eingegangen: 31.3.2008
Angenommen: 15.5.2008
Publication Date:
27 January 2009 (online)

Zusammenfassung
Oxidativer Stress am retinalen Pigmentepithel (RPE) ist ursächlich an der Entstehung der altersbedingten Makuladegeneration (AMD) beteiligt. Ein Oxidationsschutz des RPE durch Supplementation von Antioxidantien ist sowohl auf klinischer als auch auf experimenteller Ebene komplex. Ein mögliches therapeutisches Target ist die durch oxidativen Stress angestoßene zelluläre Signaltransduktion, an deren Ende z. B. eine veränderte Expression von vasoaktiven Signalmolekülen oder die Induktion von Apoptose steht. Die Übersichtsarbeit fasst den Stand der Literatur zu zellulären Effekten freier Radikale zusammen und leitet daraus mögliche Ansätze zur therapeutischen Protektion des RPE ab.
Abstract
Oxidative stress at the retinal pigment epithelium (RPE) is involved in the pathophysiology of age-related macula degeneration (ARMD). Observations on a clinical or laboratory level have revealed that supplementation of antioxidative scavengers failed in many cases. A potential therapeutic target is the cellular signal transduction cascade initiated by oxidative stress which results, e. g., in altered expression of pro- and antiagiogenic factors as well as induction of apoptosis. This review summarises the current literature on cellular effects of free radicals and deduces potential therapeutic approaches to protect the RPE from oxidative damage.
Schlüsselwörter
Retina - Pharmakologie - Pathologie
Key words
Retina - Pharmacology - Pathology
Literatur
- 1 Congdon N, O’Colmain B, Klaver C C. et al . Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004; 122 477-485
- 2 Knauer C, Pfeiffer N. Erblindung in Deutschland – heute und 2030. Ophthalmologe. 2006; 103 735-741
- 3 Pauleikhoff D, Holz F G. Altersbedingte Makuladegeneration: 1. Epidemiologie, Pathogenese und klinische Differzierung. Ophthalmologe. 1996; 93 299-315
- 4 Edwards A O, Ritter 3 rd R, Abel K J. et al . Complement factor H polymorphism and age-related macular degeneration. Science. 2005; 308 421-424
- 5 Haines J L, Hauser M A, Schmidt S. et al . Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005; 308 419-421
- 6 Klein R J, Zeiss C, Chew E Y. et al . Complement factor H polymorphism in age-related macular degeneration. Science. 2005; 308 385-389
- 7 Hageman G S, Anderson D H, Johnson L V. et al . A common haplotype in the complement regulatory gene factor H (HF1 /CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005; 102 7227-7232
- 8 Shuler R K, Hauser M A, Caldwell Jr J. et al . Neovascular age-related macular degeneration and its association with LOC387715 and complement factor H polymorphism. Arch Ophthalmol. 2007; 125 63-67
- 9 Dewan A, Liu M, Hartman S. et al . HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006; 314 989-992
- 10 Luibl V, Isas J M, Kayed R. et al . Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest. 2006; 116 378-385
- 11 Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005; 85 845-881
- 12 Bhutto I A, McLeod D S, Hasegawa T. et al . Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp Eye Res. 2006; 82 99-110
- 13 Hollyfield J G, Bonilha V L, Rayborn M E. et al . Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med. 2008; 14 194-198
- 14 Beatty S, Koh H, Phil M. et al . The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000; 45 115-134
- 15 Pauleikhoff D, Kuijk F J, Bird A C. Makuläres Pigment und altesabhängige Makuladegeneration. Ophthalmologe. 2001; 98 511-519
- 16 Rozanowska van M, Jarvis-Evans J, Korytowski W. et al . Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem. 1995; 270 18 825-18 830
- 17 Seagle B L, Rezai K A, Kobori Y. et al . Melanin photoprotection in the human retinal pigment epithelium and its correlation with light-induced cell apoptosis. Proc Natl Acad Sci U S A. 2005; 102 8978-8983
- 18 Sparrow J R, Zhou J, Ben-Shabat S. et al . Involvement of oxidative mechanisms in blue-light-induced damage to A 2E-laden RPE. Invest Ophthalmol Vis Sci. 2002; 43 1222-1227
- 19 Sundelin S P, Nilsson S E, Brunk U T. Lipofuscin-formation in cultured retinal pigment epithelial cells is related to their melanin content. Free Radic Biol Med. 2001; 30 74-81
- 20 Beatty S, Koh H, Phil M. et al . The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000; 45 115-134
- 21 Schutt F, Davies S, Kopitz J. et al . Photodamage to human RPE cells by A 2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 2000; 41 2303-2308
- 22 Rozanowska M, Wessels J, Boulton M. et al . Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic Biol Med. 1998; 24 1107-1112
- 23 Schutt F, Bergmann M, Holz F G. et al . Isolation of intact lysosomes from human RPE cells and effects of A 2-E on the integrity of the lysosomal and other cellular membranes. Graefes Arch Clin Exp Ophthalmol. 2002; 240 983-988
- 24 Suter M, Reme C, Grimm C. et al . Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem. 2000; 275 39 625-39 630
- 25 Tomita M, Yamada H, Adachi Y. et al . Choroidal neovascularization is provided by bone marrow cells. Stem Cells. 2004; 22 21-26
- 26 Kannan R, Zhang N, Sreekumar P G. et al . Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells. Mol Vis. 2006; 12 1649-1659
- 27 Ohno-Matsui K, Morita I, Tombran-Tink J. et al . Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol. 2001; 189 323-333
- 28 Li X, Liu Z, Luo C. et al . Lipoamide protects retinal pigment epithelial cells from oxidative stress and mitochondrial dysfunction. Free Radic Biol Med. 2008; 44 1465-1474
- 29 Shamsi F A, Chaudhry I A, Boulton M E. et al . L-carnitine protects human retinal pigment epithelial cells from oxidative damage. Curr Eye Res. 2007; 32 575-584
- 30 Hanneken A, Lin F F, Johnson J. et al . Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci. 2006; 47 3164-3177
- 31 Liang F Q, Green L, Wang C. et al . Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res. 2004; 78 1069-1075
- 32 Zeitz O, Schlichting L, Richard G. et al . Lack of antioxidative properties of vitamin C and pyruvate in cultured retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2007; 245 276-281
- 33 Chen Q, Espey M G, Krishna M C. et al . Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A. 2005; 102 13 604-13 609
- 34 AREDS_investigator_group . A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001; 119 1417-1436
- 35 Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem. 1989; 58 79-110
- 36 Xu K Y, Zweier J L, Becker L C. Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2 +)-ATPase function by direct attack on the ATP binding site. Circ Res. 1997; 80 76-81
- 37 Zeitz O, Maass A E, Van Nguyen P. et al . Hydroxyl radical-induced acute diastolic dysfunction is due to calcium overload via reverse-mode Na(+)-Ca(2 +) exchange. Circ Res. 2002; 90 988-995
- 38 Schlichting L, Strauss O, Zeitz O. Influence of Hydroxyl Radicals on the Ca2 +-Metabolism of the Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci. 2005; 46 E-Abstract 3040
- 39 Mukherjee P K, Marcheselli V L, Barreiro S. et al . Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D 1 signaling. Proc Natl Acad Sci U S A. 2007; 104 13 152-13 157
- 40 Mukherjee P K, Marcheselli V L, Serhan C N. et al . Neuroprotectin D 1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A. 2004; 101 8491-8496
- 41 Marti H H. Erythropoietin and the hypoxic brain. J Exp Biol. 2004; 207 3233-3242
- 42 Smith K J, Bleyer A J, Little W C. et al . The cardiovascular effects of erythropoietin. Cardiovasc Res. 2003; 59 538-548
- 43 Masuda S, Kobayashi T, Chikuma M. et al . The oviduct produces erythropoietin in an estrogen- and oxygen-dependent manner. Am J Physiol Endocrinol Metab. 2000; 278 E1038-1044
- 44 Junk A K, Mammis A, Savitz S I. et al . Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2002; 99 10 659-10 664
- 45 Weishaupt J H, Rohde G, Polking E. et al . Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci. 2004; 45 1514-1522
- 46 Gassmann M, Heinicke K, Soliz J. et al . Non-erythroid functions of erythropoietin. Adv Exp Med Biol. 2003; 543 323-330
- 47 Ehrenreich H, Aust C, Krampe H. et al . Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis. 2004; 19 195-206
- 48 Ehrenreich H, Hasselblatt M, Dembowski C. et al . Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med. 2002; 8 495-505
- 49 Ehrenreich H, Hinze-Selch D, Stawicki S. et al . Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry. 2007; 12 206-220
- 50 Grimm C, Wenzel A, Groszer M. et al . HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med. 2002; 8 718-724
- 51 Zeitz O, Gawad A, Schlichting L. et al . Oxidative Stress Induces Apoptosis in Cultured ARPE-19 Cells – Protective Effect of Erythropoietin. Invest Ophthalmol Vis Sci. 2007; 48
- 52 Jaquet K, Krause K, Tawakol-Khodai M. et al . Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res. 2002; 64 326-333
- 53 Watanabe D, Suzuma K, Matsui S. et al . Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med. 2005; 353 782-792
- 54 Hernandez C, Fonollosa A, Garcia-Ramirez M. et al . Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care. 2006; 29 2028-2033
- 55 Jonas J B, Neumaier M. Erythropoietin levels in aqueous humour in eyes with exudative age-related macular degeneration and diabetic retinopathy. Clin Experiment Ophthalmol. 2007; 35 186-187
PD Dr. Oliver Zeitz
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Phone: ++ 49/40/4 28 03 33 14
Fax: ++ 49/40/4 28 03 88 84
Email: zeitz@uke.uni-hamburg.de