Subscribe to RSS
DOI: 10.1055/s-2008-1032047
Preparation of Optically Active 1,2-Diol Monotosylates by Enzymatic Hydrolysis
Publication History
Publication Date:
16 January 2008 (online)
Abstract
An easy preparation of optically active 1,2-diol monotosylate derivatives by enzymatic hydrolysis is disclosed. Lipase PS (Burkholderia cepacia) catalyzes the hydrolysis of racemic 2-acetoxyhexyl tosylate with excellent enantioselectivity to afford the corresponding optically active compounds. In this reaction, a unique temperature effect is observed. After optimizing the reaction conditions, this procedure is widely applicable to the practical preparation of both enantiomers of various optically active compounds with high ee.
Key words
enantioselective hydrolyses - enzymes - kinetic resolution - solvent effects - tosylates
- For recent examples, see:
-
1a
Zhu X.-M.He L.-L.Yang G.-L.Lei M.Chen S.-S.Yang J.-S. Synlett 2006, 3510 -
1b
Guaragna A.De Nisco M.Pedatella S.Palumbo G. Tetrahedron: Asymmetry 2006, 17: 2839 -
1c
Wang C.Kunts DA.Hamlet T.Sim L.Rose DR.Pinto BM. Bioorg. Med. Chem. 2006, 14: 8332 -
1d
Ghosh AK.Gong G. Org. Lett. 2007, 9: 1437 -
1e
Chattopadhyay A.Vichare P.Dhotare B. Tetrahedron Lett. 2007, 48: 2871 -
1f
Martynow JG.Jozwik J.Szelejewski W.Achmatowicz O.Kutner A.Wisniewski K.Winiarski J.Zegrocka-Stendel O.Golebiewski P. Eur. J. Org. Chem. 2007, 689 -
1g
Bedore MW.Chang S.-K.Paquette LA. Org. Lett. 2007, 9: 513 - For recent examples, see:
-
2a
El Ashry ESH.Abdel-Rahman A.Rashed N.Awad LF.Rasheed HA. Nucleosides, Nucleotides Nucleic Acids 2006, 25: 299 -
2b
Ikura M.Nakatani S.Yamamoto S.Habashita H.Sugiura T.Takahashi K.Ogawa K.Ohno H.Nakai H.Toda M. Bioorg. Med. Chem. 2006, 14: 4241 -
2c
Koo B.McDonald FE. Org. Lett. 2007, 9: 1737 - For recent examples, see:
-
3a
Wallner SR.Nestl BM.Faber K. Org. Biomol. Chem. 2005, 3: 2652 -
3b
Fernandez C.Diouf O.Moman E.Gomez G.Fall Y. Synthesis 2005, 1701 -
3c
Masutani K.Minowa T.Hagiwara Y.Mukaiyama T. Bull. Chem. Soc. Jpn. 2006, 79: 1106 -
3d
Miranda PO.Ramirez MA.Martin VS.Padron JI. Org. Lett. 2006, 8: 1633 -
3e
Sharma GVM.Reddy JJ.Reddy KL. Tetrahedron Lett. 2006, 47: 6531 -
3f
Chen C.-L.Sparks SM.Martin SF. J. Am. Chem. Soc. 2006, 128: 13696 -
3g
Mohapatra DK.Ramesh DK.Giardello MA.Chorghade MS.Gurjar MK.Grubbs RH. Tetrahedron Lett. 2007, 48: 2621 -
3h
Chattopadhyay A.Vichare P.Dhotare B. Tetrahedron Lett. 2007, 48: 2871 -
3i
Fernandez C.Gandara Z.Gomez G.Covelo B.Fall Y. Tetrahedron Lett. 2007, 48: 2939 -
3j
Suhara Y.Oka S.Kittaka A.Takayama H.Waku K.Sugiura T. Bioorg. Med. Chem. 2007, 15: 854 - For enzymatic hydrolysis of acyl derivatives of 1,2-diol monotosylates in an aqueous media, see:
-
4a
Hamaguchi S.Ohashi T.Watanabe K. Agric. Biol. Chem. 1986, 50: 375 -
4b
Hamaguchi S.Ohashi T.Watanabe K. Agric. Biol. Chem. 1986, 50: 1629 -
4c
Hamaguchi S,Katayama K,Ohashi T, andWatanabe K. inventors; JP 62158250. -
4d
Hamaguchi S,Kobayashi M,Katayama K,Ohashi T, andWatanabe K. inventors; JP 62209049. -
4e
Kobayashi M,Hamaguchi S,Katayama K,Ohashi T, andWatanabe K. inventors; JP 62212382. -
4f
Pederson RL.Liu KK.-C.Rutan JF.Chen L.Wong C.-H. J. Org. Chem. 1990, 55: 4897 -
4g
Chen C.-S.Liu Y.-C.Marsella M. J. Chem. Soc., Perkin Trans. 1 1990, 2559 - For enzymatic esterification of 1,2-diol monotosylates in organic solvent, see:
-
5a
Chen C.-S.Liu Y.-C. Tetrahedron Lett. 1989, 30: 7165 -
5b
Chênevert R.Gagnon R. J. Org. Chem. 1993, 58: 1054 -
5c
Neagu C.Hase T. Tetrahedron Lett. 1993, 34: 1629 -
5d
Boaz NW.Zimmerman RL. Tetrahedron: Asymmetry 1994, 5: 153 -
5e
Boaz NW.Falling SN.Moore MK. Synlett 2005, 1615 -
5f
For enzymatic hydrolysis in organic solvent, see ref. 5c. For enzymatic alcoholysis in organic solvent, see ref. 4g and 5a.
- 6
Saito Y, andNakamura T. inventors; JP 10057096. For enantioselective decomposition of 1,2-diol monotosylate by microorganisms, see: - 11
Chen C.-S.Fujimoto Y.Girdaukas G.Sih C. J. J. Am. Chem. Soc. 1982, 104: 7294 - 14
Sakai T.Kawabata I.Kishimoto T.Ema T.Utaka M. J. Org. Chem. 1997, 62: 4906 - The presence of the inversion temperature on enantio-selectivity in kinetic resolution could be explained as the clustering effects in the substrate solvation by G. Cainelli et al. See:
-
15a
Cainelli G.De Matteis V.Galletti P.Giacomimi D.Orioli P. Chem. Commun. 2000, 2351 -
15b
Cainelli G.Galletti P.Giacomimi D.Gualandi A.Quintavalla A. Helv. Chim. Acta 2003, 86: 3548 - The obtaining optically active compounds could be useful for natural product syntheses. For recent examples, see:
-
17a
Fürstner A.Fenster MDB.Fasching B.Godbout C.Radkowski K. Angew. Chem. Int. Ed. 2006, 45: 5510 -
17b
Felzmann W.Castagnolo D.Rosenbeiger D.Mulzer J. J. Org. Chem. 2007, 72: 2182 -
17c
Pospísil J.Markó IE. J. Am. Chem. Soc. 2007, 129: 3516 -
17d
Morinaka BI.Skepper CK.Molinski TF. Org. Lett. 2007, 9: 1975 -
17e
Ok T.Jeon A.Lom JH.Hong CS.Lee H.-S. J. Org. Chem. 2007, 72: 7390 - 18
Martinelli MJ.Vaidyanathan R.Pawlak JM.Nayyar NK.Dhokte UP.Doecke CW.Zollars LMH.Moher ED.Khau VV.Kosmrlj B. J. Am. Chem. Soc. 2002, 124: 3578
References and Notes
The substrate (±)-1 was prepared form 1-hexene in 3 steps; 1) OsO4, NMO, acetone-H2O; 2) TsCl, Bu2SnO, Et3N, CH2Cl2; [18] 3) Ac2O, pyridine. The details will be reported separately.
8In the screening test, we used the following enzymes: lipase type II, type VII (Sigma), lipase PS, lipase AY, lipase A, PLE-A, lipase d-360, lipase AK, lipase D (Amano Enzyme, Inc.), lipase OF (Meito Sangyo Co., Ltd), lipase (Nagase ChemteX Corp.), Novozym (NovoNordisk A/S). The hydrolysis of (±)-1 with lipase type II, lipase type VII, PLE-A or lipase OF proceeded with low enantioselectivity. The other enzymes did not catalyze the reaction.
9The absolute configurations of 1 and 2 were confirmed by comparing the obtained optical rotation value with the reported value: (R)-1, lit. [5a] [α]D 25 +13.4 (CHCl3), 86% ee; (S)-2, lit. [5a] [α]D 25 +4.2 (CHCl3), 66% ee.
10The ee of 1 was determined by HPLC analysis with CHIRALCEL AD-H (Daicel Chemical Industries, Ltd.); eluent: hexane-i-PrOH (90:10); flow rate: 0.5 mL min-1; t R = 18 (S) and 19.5 (R) min. A similar analysis of 2 was also performed with CHIRALCEL OD-H; eluent: hexane-i-PrOH (95:5); flow rate: 0.5 mL min-1; t R = 32 (R) and 35.5 (S) min.
12Compound (S)-1: 1H NMR (300 MHz, CDCl3): δ = 0.86 (t, J = 7.0 Hz, 3 H) 1.13-1.34 (m, 4 H), 1.46-1.65 (m, 2 H), 1.98 (s, 3 H), 2.46 (s, 3 H), 4.05 (dd, J 1 = 5.5 Hz, J 2 = 10.5 Hz, 1 H), 4.10 (dd, J 1 = 3.5 Hz, J 2 = 10.5 Hz, 1 H), 4.90-5.00 (m, 1 H), 7.35 (d, J = 8.5 Hz, 2 H), 7.79 (d, J = 8.5 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 13.7, 20.8, 22.2, 27.0, 30.0, 70.0, 70.9, 127.8, 130.0, 132.7, 145.0, 170.3. IR (neat): 3460, 2957, 2870, 1730, 1597, 1454, 1362, 1177 cm-1. MS (EI): m/z (%) = 314 (7.2) [M+], 254 (27), 228 (38), 198 (16), 172 (16), 143 (36), 129 (17), 91 (100), 82 (16). HRMS: m/z [M+] calcd for C15H22O5S: 314.1188; found: 314.1187.
13Compound (R)-2: 1H NMR (300 MHz, CDCl3): δ = 0.87 (t, J = 7.0 Hz, 3 H), 1.10-1.53 (m, 6 H), 2.19 (br s, 1 H), 2.45 (s, 3 H), 3.78-3.91 (m, 1 H), 3.84-3.94 (m, 1 H), 4.00-4.08 (m, 1 H), 7.36 (d, J = 8.5 Hz, 2 H), 7.80 (d, J = 8.5 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 13.8, 21.5, 22.4, 27.2, 32.2, 69.2, 73.9, 132.5, 144.9. IR (neat): 3539, 2955, 2872, 1599, 1454, 1360, 1177, 1098, 974 cm-1. MS (EI): m/z (%) = 242 (25), 172 (11), 155 (52), 139 (10) 107 (20), 91 (100), 87 (42). HRMS: m/z [M+] calcd for C13H20O4S: 272.1082; found: 272.1085.
16In the cases of 3a and 3e, the isolated yields of the compounds were low for the high volatility.