Subscribe to RSS
DOI: 10.1055/s-2008-1032068
Parallel Kinetic Resolution of 1-Phenylethanol Using Quasi-Enantiomeric Active Esters
Publication History
Publication Date:
23 January 2008 (online)
Abstract
The parallel kinetic resolution of racemic 1-phenylethanol using an equimolar combination of quasi-enantiomeric pentafluorophenyl esters is discussed. The levels of diastereoselectivity were excellent (>88% de) leading to separable quasi-enantiomeric esters in good yields.
Key words
chiral auxiliaries - chiral resolution - kinetic resolution - molecular recognition - stereoselectivity
- For reviews see:
-
1a
Eames J. Angew. Chem. Int. Ed. 2000, 39: 885 -
1b
Eames J. In Organic Synthesis Highlights Vol. V: Wiley-VCH; Weinheim: 2003. Chap. 17. p.151-164 -
1c
Dehli JR.Gotor V. Chem. Soc. Rev. 2002, 31: 365 -
1d
Dehli JR.Gotor V. ARKIVOC 2002, (v): 196 -
1e
Liao L.Zhang F.Dmitrenko O.Bach RD.Fox JM. J. Am. Chem. Soc. 2004, 126: 4490 - 2
Preston SC. D. Phil. Dissertation; Oxford University: UK, 1989; Diss. Abstr. Int. B 1990, 51: 2896 -
3a
Vedejs E.Chen X. J. Am. Chem. Soc. 1997, 119: 2584 - For additional studies, see:
-
3b
Vedejs E.Rozners E. J. Am. Chem. Soc. 2001, 123: 2428 -
3c
Vedejs E.Daugulis O. J. Am. Chem. Soc. 2003, 125: 4166 - 4 For a comprehensive review into quasi-enantiomers, see:
Zhang Q.Curran DP. Chem. Eur. J. 2005, 11: 4866 -
5a
Davies SG.Diez D.El Hammouni MM.Garner AC.Garrido NM.Long MJ.Morrison RM.Smith AD.Sweet MJ.Withey JM. Chem. Commun. 2003, 2410 - For additional studies, see
-
5b
Davies SG.Garner AC.Long MJ.Smith AD.Sweet MJ.Withey JM. Org. Biomol. Chem. 2004, 2: 3355 -
5c
Davies SG.Garner AC.Long MJ.Morrison RM.Roberts PM.Savory ED.Smith AD.Sweet MJ.Withey JM. Org. Biomol. Chem. 2005, 3: 2762 -
6a
Coumbarides GS.Dingjan M.Eames J.Flinn A.Motevalli M.Northen J.Yohannes Y. Synlett 2006, 101 - For additional studies, see:
-
6b
Coumbarides GS.Eames J.Flinn A.Northen J.Yohannes Y. Tetrahedron Lett. 2005, 46: 849 -
6c
Coumbarides GS.Dingjan M.Eames J.Flinn A.Northen J.Yohannes Y. Tetrahedron Lett. 2005, 46: 2897 -
6d
Chavda S.Coulbeck E.Coumbarides GS.Dingjan M.Eames J.Ghilagaber S.Yohannes Y. Tetrahedron: Asymmetry 2006, 17: 3386 -
6e
Boyd E.Chavda S.Eames J.Yohannes Y. Tetrahedron: Asymmetry 2007, 18: 476 -
6f
Coumbarides GS.Dingjan M.Eames J.Flinn A.Northen J. Chirality 2007, 19: 321 -
6g
Chavda S.Coumbarides GS.Dingjan M.Eames J.Flinn A.Northen J. Chirality 2007, 19: 313 -
6h
Boyd E.Coulbeck E.Coumbarides GS.Chavda S.Dingjan M.Eames J.Flinn A.Motevalli M.Northen J.Yohannes Y. Tetrahedron: Asymmetry 2007, 18: 2515 - The use of ten equivalents of racemic alcohol has been reported by:
-
7a
Evans DA.Anderson JC.Taylor MK. Tetrahedron Lett. 1993, 34: 5563 -
7b
Miller SJ.Copeland GT.Papaioannou N.Horstmann TE.Ruel EM. J. Am. Chem. Soc. 1998, 120: 1629 -
7c
Bull SD.Davies SG.Garner AC.Kruchinin D.Key MS.Roberts PM.Savory AD.Smith AD.Thomson JE. Org. Biomol. Chem. 2006, 4: 2945 -
7d
Coulbeck E.Eames J. Tetrahedron: Asymmetry 2007, 18: 2313 -
7e
See also ref. 18.
-
7f
For our study, an excess of alcohol rac-16 was used to minimize epimerisation of the product, potential racemisation of the active ester(s) and as a competitive Lewis base.
- 10
Boyd E.Chavda S.Coulbeck E.Coumbarides GS.Dingjan M.Eames J.Flinn A.Krishnamurthy AK.Namutebi M.Northen J.Yohannes Y. Tetrahedron: Asymmetry 2006, 17: 3406 ; and references therein - For representative reviews, see:
-
14a
Fu G. Acc. Chem. Res. 2000, 33: 412 -
14b
Miller SJ. Acc. Chem. Res. 2004, 37: 601 -
14c
France S.Guerin DJ.Miller SJ.Lectka T. Chem. Rev. 2003, 103: 2985 -
14d
Spivey AC.Arseniyadis S. Angew. Chem. Int. Ed. 2004, 43: 5436 -
14e
Vedejs E.Jure M. Angew. Chem. Int. Ed. 2005, 44: 3974 -
14f
Pamies O.Bäckvall J.-E. Chem. Rev. 2003, 103: 3247 -
14g
Robinson EJE.Bull SD. Tetrahedron: Asymmetry 2003, 14: 1407 - For a review, see:
-
15a
Ghanem A.Aboul-Enein HY. Chirality 2005, 17: 1 - For comprehensive examples, see:
-
15b
Morgan B.Oehlschlager AO.Stokes TM. J. Org. Chem. 1992, 57: 3231 -
15c
Brown SM.Davies SG.de Sousa JAA. Tetrahedron: Asymmetry 1993, 4: 813 -
15d
Naemura K.Murata M.Tanake R.Yano M.Hirose K.Tobe Y. Tetrahedron: Asymmetry 1996, 7: 1581 -
15e
Naemura K.Murata M.Tanake R.Yano M.Hirose K.Tobe Y. Tetrahedron: Asymmetry 1996, 7: 3285 -
15f
Cordova A.Tremblay MR.Clapham B.Janda KD. J. Org. Chem. 2001, 66: 5645 -
15g
Swaleh SM.Hungerhoff B.Sonnenschein H.Theil F. Tetrahedron 2002, 58: 4085 -
15h
Hungerhoff B.Sonnenschein H.Theil F. J. Org. Chem. 2002, 67: 1781 - 16
Eames J. Synthesis by Resolution and Inversion, In Science of Synthesis 36:Thomas EJ.Clayden JC. Georg Thieme Verlag; Stuttgart: 2007. p.341-421 - 18 Fu has reported the use of 2-methyl-2-butanol (t-amyl alcohol) as a solvent within the efficient resolution of 1-phenylethanol using a chiral DMAP equivalent. For additional information, see:
Ruble JC.Tweddell J.Fu GC. J. Org. Chem. 1998, 63: 2794 - 19
Yang H.Henke E.Bornscheuer UT. Tetrahedron: Asymmetry 1999, 10: 957
References and Notes
Alternatively, n-BuLi (in hexanes) and PhLi (in dibutyl ether) could be used but they contained traces of lithium butoxide which can lead to the formation of an inseparable by-product, butyl 2-phenylpropionate (in 16% and 5% yields for n-BuLi and PhLi, respectively). Characterisation data for butyl 2-phenylpropionate; R f [light PE (40-60 °C)-Et2O, 1:1] 0.80. IR (film): 1674 (C=O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.15-7.28 (m, 5 H, 5 × CH, Ph), 3.99 (td, J = 1.5, 6.8 Hz, 2 H, OCH2), 3.63 (q, J = 7.2 Hz, 1 H, CHMe), 1.43-1.52 (m, 2 H, CH2), 1.42 (d, J = 7.2 Hz, 3 H, CHMe), 1.18-1.28 (m, 2 H, CH2), 0.79 (t, J = 7.5 Hz, 3 H, Me). 13C NMR (100 MHz, CDCl3): δ = 174 (C=O), 140.6 (i-C, Ph), 128.4, 127.4, 126.9 (3 × CH, Ph), 64.5 (OCH2), 45.5 (PhCH), 30.4, 18.9 (2 × CH2), 18.4 (MeCH), 13.6 (MeCH2). HRMS: m/z [M+] calcd for C13H18O2: 206.1299; found: 206.1301.
9Using racemic lithium 1-(4-methoxyphenyl)ethoxide, epimerisation of esters such as (S,S)-anti-24 and (S,R)-syn-24, has been shown to occur at a significantly faster rate than simple transesterification.
11Measured by 1H NMR (400 MHz) spectroscopy; for rac,anti-17, the methyl doublets appear at δ = 1.43 (d, J = 7.2 Hz, 3 H, MeCH) and 1.42 (d, J = 6.6 Hz, 3 H, MeCH), whereas for rac,syn-17, the methyl doublets appear at δ = 1.41 (d, J = 7.2 Hz, 3 H, MeCH) and 1.35 (d, J = 6.6 Hz, 3 H, MeCH).
12For active esters: R f [light PE (40-60 °C)-Et2O, 9:1] 0.69 [for (R)-11] and 0.50 [for (S)-12]. For further information see ref. 10.
13For a representative procedure, see ref. 7d.
17
Experimental Procedure for 1-Phenylethyl 2-Phenylpropionate [(
R
,
R
)-
anti
-17] and 1-Phenylethyl 2-(6-Methoxynaphthalen-2-yl)propionate [(
S
,
S
)-
anti
-24] Derived from the Parallel Kinetic Resolution of 1-Phenylethanol (
rac
-16) Using Active Esters (
R
)-11 and (
S
)-12: t-BuLi (1.81 mL, 1.7 M in pentane, 3.07 mmol) was added to a stirred solution of 1-phenylethanol (rac-16; 1.25 g, 1.24 mL, 10.25 mmol) in THF at -78 °C. A solution of ZnCl2 (3.07 mL, 1 M in Et2O, 3.07 mmol) was added and the resulting solution was stirred for 2 min. An equimolar combination of pentafluorophenyl 2-phenylpropionate [(R)-11; 0.16 g, 0.51 mmol] and pentafluorophenyl 2-(6-methoxynaphthalen-2-yl)propionate [(S)-12; 0.203 g, 0.51 mmol] in THF (20 mL) was added, and the resulting solution was stirred for 12 h. The reaction was quenched by the addition of sat. aq NH4Cl (5 mL) and H2O (10 mL). The organic layer was extracted with CH2Cl2 (3 × 50 mL), washed with H2O (10 mL), dried (over MgSO4) and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light PE (40-60 °C)-Et2O (9:1) to give a pair of inseparable diastereomers (anti/syn, 93:7) of 1-phenylethyl 2-phenylpropionates (R,R)-anti-17 and (R,S)-syn-17 (0.10 g, 77%) as an oil {R
F [light PE (40-60 °C)-Et2O (1:1)] 0.80} and a pair of inseparable diastereomers (anti/syn, 94:6) of 1-phenylethyl 2-(6-methoxynaphthalen-2-yl)propionates (S,S)-anti-24 and (S,R)-syn-24 (0.13 g, 76%) as an oil {R
f
[light PE (40-60 °C)-Et2O (1:1)] 0.62}. Pentafluorophenol, if present, can be removed by an aq NaOH extraction. All compounds synthesised had satisfactory 1H and 13C NMR, IR and HRM spectra with >95% purity.
Characterisation data for:
1-Phenylethyl 2-Phenylpropionate [(R,R)-anti-17]: transparent solid; mp 81-83 °C; R
f
[light PE (40-60 °C)-Et2O, 1:1] 0.80; [α]D
20 +10.53 (c = 3.0, CHCl3) {lit.19 [α]D
20 +9.9 (c = 0.87, CHCl3)}. IR (CHCl3): 1730 (C=O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.14-7.30 (m, 8 H, 8 × CH, PhA and PhB), 7.00-7.05 (m, 2 H, 2 × CH, PhA or PhB), 5.78 (q, J = 6.6 Hz, 1 H, PhCHMeO), 3.68 (q, J = 7.2 Hz, 1 H, PhCHMe), 1.43 (d, J = 7.2 Hz, 3 H, PhCHMe), 1.42 (d, J = 6.6 Hz, 3 H, PhCHMeO). 13C NMR (100 MHz, CDCl3): δ = 173.5 (C=O), 141.6 (i-C, PhCHMeO), 140.4 (i-C, PhCHMe), 128.5,2 128.3,2 127.6,2 127.5,1 127.0,1 125.6,2 (10 × CH, PhA, PhB), 72.4 (PhCHMeO), 45.7 (PhCHMe), 22.3 (PhCHMeO), 18.3 (PhCHMe). HRMS: m/z [MNH4
+] calcd for C17H22NO2: 272.1645; found: 272.1648. MS: m/z (%) = 254 (10) [M+], 105 (100) [PhCHMe+].
1-Phenylethyl 2-(6-Methoxynaphthalene-2-yl)propionate [(S,S)-anti-24]: white solid; mp 94-96 °C; R
f
[light PE (40-60 °C)-Et2O (1:1)] 0.62; [α]D
20 +26.6 (c = 3.2, CHCl3). IR (CHCl3): 1723 (C=O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.66 (d, J = 8.4 Hz, 1 H, CH, Ar), 7.63 (d, J = 8.4 Hz, 1 H, CH, Ar), 7.55 (br s, 1 H, CH, Ar), 7.33 (dd, J = 1.8, 8.3 Hz, 1 H, CH, Ar), 7.08-7.19 (m, 7 H, 7 × CH, Ar, Ph), 5.86 (q, J = 6.6 Hz, 1 H, PhCHMeO), 3.90 (s, 3 H, OMe, Ar), 3.88 (q, J = 7.2 Hz, 1 H, ArCHMe), 1.56 (d, J = 7.2 Hz, 3 H, ArCHMe), 1.50 (d, J = 6.6 Hz, 3 H, PhCHCMeO). 13C NMR (100 MHz, CDCl3): δ = 173.7 (C=O), 147.5 (i-CO, Ar), 141.6 (i-C, Ph), 135.6 (i-C, Ar), 133.6, 128.9 (2 × i-C, Ar), 129.3,1 127.0,1 126.4,1 126.0,1 118.8,1 105.51 (6 × CH, Ar), 128.2,2 127.5,1 125.7,2 (5 × CH, Ph), 72.5 (PhCHMeO), 55.3 (OMe), 45.6 (ArCHMe), 22.3 (PhCHMeO), 18.4 (ArCHMe). HRMS: m/z [MNH4
+] calcd for C22H26NO3: 352.1907; found: 352.1907. MS: m/z (%) = 334 (20) [M+], 185 (100) [ArCHMe+], 105 (60) [PhCHMe+].