Subscribe to RSS
DOI: 10.1055/s-2008-1042807
On Inventing Catalytic Reactions via Ruthena- or Rhodacyclic Intermediates for Atom Economy
Publication History
Publication Date:
26 February 2008 (online)
Abstract
Novel catalytic reactions via ruthena- or rhodacyclic intermediates have been developed by our research group. We initiated our study from (1) ruthenium-catalyzed [2+2] cycloaddition of alkynes with alkenes, followed by developing (2) intramolecular Pauson-Khand-type reaction of 1,6-enynes, (3) hydroquinone synthesis, (4) cyclocotrimerization reactions, and (5) codimerization of styrenes with ethylene. Another approach to construct novel functional monomers, such as cyclopentenones, pyranopyrandiones, and substituted phenols, involves cleavage of carbon-carbon bonds in cyclobutenediones, cyclopropenones, and cyclobutenones. All reactions may proceed with high atom-efficiency via ruthena- or rhodacyclic intermediates, represented by ruthenacyclopentene, (maleoyl)ruthenium, and rhodacyclopentenone intermediates. In addition, rhodium-catalyzed [2+2+2] cocyclization of alkynes with isocyanates as well as novel ruthenium-catalyzed [2+2+1] cocyclization of alkynes, isocyanates, and carbon monoxide have been disclosed.
1 Introduction
2 Ruthenium-Catalyzed Cycloaddition of Alkynes with Alkenes
2.1 [2+2] Cycloaddition of Alkynes with 2-Norbornenes
2.2 Intramolecular Pauson-Khand-Type Reaction of Enynes with Carbon Monoxide
2.3 Cross-Carbonylation of Alkynes with 2-Norbornenes or Electron-Deficient Alkenes to Hydroquinones
2.4 Synthesis of Benzenepolycarboxylates by Cross-Benzannulation of Acetylenedicarboxylates with Allylic Compounds
2.5 [2+2+2] Cocyclization of Three Different Alkynes
2.6 Regio- and Stereoselective Dimerization of Styrenes and Linear Codimerization of Styrenes with Ethylene
3 Ruthenium- and Rhodium-Catalyzed Cleavage of C-C Bonds Leading to Reconstructive Synthesis of Novel Functional Monomers
3.1 Ru-Catalyzed Selective Monodecarbonylative Coupling of Cyclobutenediones with Alkenes to Cyclopentenones
3.2 Ru-Catalyzed Carbonylative Dimerization of Cyclopropenones and Cross-Carbonylation of Cyclopropenones with Alkynes to Pyranopyrandiones
3.3 Ru- and Rh-Catalyzed Ring-Opening Reactions of Cyclobutenones
3.4 Rh-Catalyzed Direct Synthesis of Substituted Phenols from Cyclobutenones and Electron-Deficient Alkenes
4 Ruthenium- and Rhodium-Catalyzed Cocyclization of Alkynes and Isocyanates
4.1 Rh-Catalyzed Cyclocotrimerization of Alkynes and Isocyanates to 2-Pyridones or Pyrimidine-2,4-diones
4.2 Ru-Catalyzed [2+2+1] Cocyclization of Alkynes, Isocyanates, and Carbon Monoxide
5 Summary
Key words
ruthenium - rhodium - catalyst - cocyclization - C-C bond cleavage
- For a review, see:
-
1a
Jennings PW.Johnson LL. Chem. Rev. 1994, 94: 2241 -
1b
Chiusoli GP. J. Mol. Catal. 1987, 41: 75 -
1c
Schmid R.Kirchner K. Eur. J. Inorg. Chem. 2004, 2609 -
1d
Rosenthal U.Burlakov VV.Bach MA.Beweries T. Chem. Soc. Rev. 2007, 36: 719 -
2a
Schore NE. Chem. Rev. 1988, 88: 1081 -
2b
Lautens M.Klute W.Tam W. Chem. Rev. 1996, 96: 49 -
2c
Ojima I.Tzamarioudaki M.Li Z.Donovan RJ. Chem. Rev. 1996, 96: 635 -
2d
Frühauf H.-W. Chem. Rev. 1997, 97: 523 -
3a
Otsuka S.Nakamura A. Adv. Organomet. Chem. 1976, 14: 245 -
3b
Collman JP.Hegedus LS. In Principles and Applications of Organotransition Metal Chemistry University Science Books; California: 1980. -
3c
Chappelle SD.Cole-Hamilton DJ. Polyhedron 1982, 1: 739 -
3d
Lindner E. Adv. Heterocycl. Chem. 1986, 39: 337 -
3e
Campora J.Palma P.Carmona E. Coord. Chem. Rev. 1999, 193-195: 207 -
4a
Murakami M.Itoh Y. In Activation of Unreactive Bonds and Organic SynthesisMurai S. Springer; Berlin: 1999. p.97-129 -
4b
Bishop KC. Chem. Rev. 1976, 76: 461 -
4c
Crabtree RH. Chem. Rev. 1985, 85: 245 -
4d
Rybchinski B.Milstein D. Angew. Chem. Int. Ed. 1999, 38: 870 -
4e
Mitsudo T.Kondo T. Synlett 2001, 309 -
4f
Jun C.-H. Chem. Soc. Rev. 2004, 33: 610 -
4g
Kondo T.Mitsudo T. Chem. Lett. 2005, 34: 1462 - 5
Yamamoto Y.Itoh K. In Ruthenium in Organic SynthesisMurahashi S.-I. Wiley-VCH; Weinheim: 2004. p.95-128 -
6a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
6b In Alkene Metathesis in Organic Synthesis
Fürstner A. Springer; Berlin: 1998. -
6c
Mori M. Top. Organomet. Chem. 1998, 1: 133 -
6d
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
6e
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
6f
Poulsen CS.Madsen R. Synthesis 2003, 1 -
6g
Diver T.Gissert AJ. Chem. Rev. 2004, 104: 1317 - 7
Baldwin JE. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. Pergamon; Oxford: 1991. p.63-84 - 8
Crimmins MT. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. Pergamon; Oxford: 1991. p.123-150 -
9a
Mitsudo T.Kokuryo K.Shinsugi T.Nakagawa Y.Watanabe Y.Takegami Y. J. Org. Chem. 1979, 44: 4492 ; and references therein -
9b
Mitsudo T.Hori Y.Watanabe Y. J. Organomet. Chem. 1987, 334: 157 -
10a
Warrener RN.Pitt IG.Butler DN. J. Chem. Soc., Chem. Commun. 1983, 1340 -
10b
Oevering H.Paddon-Row M.Heppener M.Oliver AM.Cotnais E.Verhoeven JW.Hush NS. J. Am. Chem. Soc. 1987, 109: 3258 - 11
Mitsudo T.Naruse H.Kondo T.Ozaki Y.Watanabe Y. Angew. Chem., Int. Ed. Engl. 1994, 33: 580 - 12
Inagaki S.Fujimoto H.Fukui K. J. Am. Chem. Soc. 1976, 98: 4054 - 13
Fraser AR.Bird PH.Bezman SA.Sharpley JR.White R.Osborn JA. J. Am. Chem. Soc. 1973, 95: 597 - 14
Doyle MJ.McMeeking J.Binger P. J. Chem. Soc., Chem. Commun. 1976, 376 -
15a
Strübing D.Beller M. In Transition Metals for Organic Synthesis 2nd ed., Vol. 1:Beller M.Bolm C. Wiley-VCH; Weinheim: 2004. Chap. 3.13. p.619-632 - For recent reviews, see:
-
15b
Boñaga LVR.Krafft ME. Tetrahedron 2004, 60: 9795 -
15c
Gibson SE.Lewis SE.Mainolfi N. J. Organomet. Chem. 2004, 689: 3873 -
15d
Gibson SE.Mainolfi N. Angew. Chem. Int. Ed. 2005, 44: 3022 - 16
Donkervoort JG.Gordon AR.Johnstone C.Kerr WJ.Lange U. Tetrahedron 1996, 52: 7391 ; and references therein - 17
Kondo T.Suzuki N.Okada T.Mitsudo T. J. Am. Chem. Soc. 1997, 119: 6187 -
18a Ruthenium-catalyzed Pauson-Khand-type reaction under similar reaction conditions has been independently reported by Murai and co-workers:
Morimoto T.Chatani N.Fukumoto Y.Murai S. J. Org. Chem. 1997, 62: 3762 -
18b
In the Murai’s reaction no cyclopentenones (5e and 5f) were obtained from these substrates.
- 19 Trimethylsilyl-substituted enyne 4d gave the desilylated product in the titanocene-catalyzed reaction of enynes with silylcyanide:
Berk SC.Grossman RB.Buchwald SL. J. Am. Chem. Soc. 1994, 116: 8593 - 20
Suzuki N.Kondo T.Mitsudo T. Organometallics 1998, 17: 766 - 21
Fukuyama T.Yamaura R.Higashibeppu Y.Okamura T.Ryu I.Kondo T.Mitsudo T. Org. Lett. 2005, 7: 5781 -
22a
Vollhardt KPC. Angew. Chem., Int. Ed. Engl. 1984, 23: 539 -
22b
Negishi E.Coperet C.Ma S.Liou S.-Y.Liu F. Chem. Rev. 1996, 96: 365 -
22c
Saito S.Yamamoto Y. Chem. Rev. 2000, 100: 2901 - For Co:
-
23a
Macomber DW.Verma AG.Rogers RD. Organometallics 1988, 7: 1241 -
23b
Zhou Z.Battaglia P.Chiusoli GP.Costa M.Nardelli M.Pelizzi C.Predieri G. J. Chem. Soc., Chem. Commun. 1990, 1632 -
23c
Chiusoli GP.Costa M.Zhou Z. J. Chem. Soc., Perkin Trans. 1 1992, 1399 -
23d
Gandon V.Agenet N.Vollhardt KPC.Malacria M.Aubert C. J. Am. Chem. Soc. 2006, 128: 8509 -
23e
Geny A.Leboeuf D.Rouquié G.Vollhardt KPC.Malacria M.Gandon V.Aubert C. Chem. Eur. J. 2007, 13: 5408 - For Ti:
-
23f
Balaich GJ.Rothwell IP. J. Am. Chem. Soc. 1993, 115: 1581 -
23g
Johnson ES.Balaich GJ.Rothwell IP. J. Am. Chem. Soc. 1997, 119: 7685 - For Ru:
-
23h
Yamamoto Y.Kitahara H.Ogawa R.Itoh K. J. Org. Chem. 1998, 63: 9610 -
23i
Yamamoto Y.Kitahara H.Hattori R.Itoh K. Organometallics 1998, 17: 1910 -
23j
Yamamoto Y.Kitahara H.Ogawa R.Kawaguchi H.Tatsumi K.Itoh K. J. Am. Chem. Soc. 2000, 122: 4310 - For Rh:
-
23k
Grigg R.Scott R.Stevenson P. J. Chem. Soc., Perkin Trans. 1 1988, 1365 - For Ni:
-
23l
Chalk AJ. J. Am. Chem. Soc. 1972, 94: 5928 -
23m
Tsuda T.Mizuno H.Takeda A.Tobisawa A. Organometallics 1997, 16: 932 - For direct observation of cobaltacyclopentadienes and their related reactions in terms of the reaction mechanism for alkyne cyclotrimerization, see:
-
24a
Diercks R.Eaton BE.Gürtzgen S.Jalisatgi S.Matzger AJ.Radde RH.Vollhardt KPC. J. Am. Chem. Soc. 1998, 120: 8247 - Recently, pathways involving cascades of metathesis steps in ruthenium-catalyzed conversion of triynes to benzene derivatives have also been described.
-
24b
Peters J.-U.Blechert S. Chem. Commun. 1997, 1983 -
24c
Witulski B.Stengel T.Fernández-Hernández JM. Chem. Commun. 2000, 1965 -
25a
Suzuki H.Itoh K.Ishii Y.Simon K.Ibers JA. J. Am. Chem. Soc. 1976, 98: 8494 -
25b
Brown LD.Itoh K.Suzuki H.Hirai K.Ibers JA. J. Am. Chem. Soc. 1978, 100: 8232 -
26a
Ozerov OV.Ladipo FT.Patrick BO. J. Am. Chem. Soc. 1999, 121: 7941 -
26b
Ozerov OV.Patrick BO.Ladipo FT. J. Am. Chem. Soc. 2000, 122: 6423 -
27a
Yamamoto Y.Ogawa R.Itoh K. Chem. Commun. 2000, 549 - Cf The reactions of ruthenacyclopentadiene with heterocumulenes, see:
-
27b
Yamamoto Y.Takagishi H.Itoh K. Org. Lett. 2001, 3: 2117 -
27c
Yamamoto Y.Takagishi H.Itoh K. J. Am. Chem. Soc. 2002, 124: 28 - 28
Singleton DM. Tetrahedron Lett. 1973, 1245 - 29
Carbonaro A.Greco A.Dall’Asta G. Tetrahedron Lett. 1968, 5129 -
30a
Ikeda S.Mori N.Sato Y. J. Am. Chem. Soc. 1997, 119: 4779 -
30b
Ikeda S.Watanabe H.Sato Y. J. Org. Chem. 1998, 63: 7026 -
30c
Mori N.Ikeda S.Sato Y. J. Am. Chem. Soc. 1999, 121: 2722 - For thermal and Lewis acid mediated enyne-yne [4+2] cycloaddition, see:
-
31a
Danheiser RL.Gould AE.Fernández de la Predilla R.Helgason AL. J. Org. Chem. 1994, 59: 5514 -
31b
Burrell RC.Daoust KJ.Bladley AZ.DiRico KJ.Johnson RP. J. Am. Chem. Soc. 1996, 118: 4218 - For palladium-catalyzed [4+2] cross-benzannulation of conjugated enynes with diynes, see:
-
31c
Gevorgyan V.Takeda A.Homma M.Sadoyori N.Radhakrishnan U.Yamamoto Y. J. Am. Chem. Soc. 1999, 121: 6391 ; and references therein -
31d
Saito S.Uchiyama N.Gevorgyan V.Yamamoto Y. J. Org. Chem. 2000, 65: 4338 -
31e
Gevorgyan V.Tsuboya N.Yamamoto Y. J. Org. Chem. 2001, 66: 2743 -
31f
Rubin M.Markov J.Chuprakov S.Wink DJ.Gevorgyan V. J. Org. Chem. 2003, 68: 6251 - 32
Kondo T.Kaneko Y.Tsunawaki F.Okada T.Shiotsuki M.Morisaki Y.Mitsudo T. Organometallics 2002, 21: 4564 -
33a
Munz C.Stephan C.tom Dieck H. J. Organomet. Chem. 1991, 407: 413 -
33b
Tsukada N.Sugawara S.Inoue Y. Org. Lett. 2000, 2: 655 -
34a
Matsushima Y.Kikuchi H.Uno M.Takahashi S. Bull. Chem. Soc. Jpn. 1999, 72: 2475 -
34b
Sorek Y.Cohen H.Meyerstein D. J. Chem. Soc., Faraday Trans. 1 1986, 82: 3431 -
34c
Sorek Y.Cohen H.Meyerstein D. J. Chem. Soc., Faraday Trans. 1 1989, 85: 1169 -
35a
Schore NE. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.1037-1064 -
35b
Grotjahn DB. In Comprehensive Organometallic Chemistry II Vol. 12:Hegedus LS.Abel EW.Stone FGA.Wilkinson G. Pergamon Press; Oxford: 1995. p.741-770 -
35c
Agenet N.Buisine O.Slowinski F.Gandon V.Aubert C.Malacria M. In Organic Reactions Vol. 68:RajanBabu TV. John Wiley and Sons; Hoboken: 2007. Chap. 1. p.1-302 -
35d
Yasufuku H.Yamazaki H. J. Organomet. Chem. 1977, 127: 197 -
35e
Yamazaki H.Wakatsuki Y. J. Organomet. Chem. 1977, 139: 157 -
35f
Kotha S.Brahmachar E.Lahiri K. Eur. J. Org. Chem. 2005, 4741 -
35g
Yamamoto Y. Curr. Org. Chem. 2005, 9: 503 -
35h
Gandon V.Aubert C.Malacria M. Chem. Commun. 2006, 2209 -
35i
Chopade PR.Louie J. Adv. Synth. Catal. 2006, 348: 2307 -
35j
Agenet N.Gandon V.Vollhardt KPC.Malacria M.Aubert C. J. Am. Chem. Soc. 2007, 129: 8860 -
36a
Takahashi T.Kotora M.Xi Z. J. Chem. Soc., Chem. Commun. 1995, 361 -
36b
Takahashi T.Xi Z.Yamazaki A.Liu Y.Nakajima K.Kotora M. J. Am. Chem. Soc. 1998, 120: 1672 -
36c
Takahashi T.Tsai F.-Y.Li Y.Nakajima K.Kotora M. J. Am. Chem. Soc. 1999, 121: 11093 -
37a
Suzuki D.Urabe H.Sato F. J. Am. Chem. Soc. 2001, 123: 7925 -
37b
Tanaka R.Nakano Y.Suzuki D.Urabe H.Sato F. J. Am. Chem. Soc. 2002, 124: 9682 - 38
Gevorgyan V.Radhakrishnan U.Takeda A.Rubina M.Rubin M.Yamamoto Y. J. Org. Chem. 2001, 66: 2835 - 39
Mori N.Ikeda S.Odashima K. Chem. Commun. 2001, 181 - 40
Yamamoto Y.Ishii J.Nishiyama H.Itoh K. J. Am. Chem. Soc. 2004, 126: 3712 - 41
Ura Y.Sato Y.Shiotsuki M.Kondo T.Mitsudo T. J. Mol. Catal. A: Chem. 2004, 209: 35 - 42
Ura Y.Sato Y.Tsujita H.Kondo T.Imachi M.Mitsudo T. J. Mol. Catal. A: Chem. 2005, 239: 166 -
43a
Christoffers J.Bergman RG. J. Am. Chem. Soc. 1996, 118: 4715 -
43b
Liang Y.Yap GPA.Rheingold AL.Theopold KH. Organometallics 1996, 15: 5284 -
43c
Hajela S.Bercaw JE. Organometallics 1994, 13: 1147 -
43d
Al-Jarallah AM.Anabtawi JA.Siddiqui MAB.Aitani AM.Al-Sa’doun AW. Catal. Today 1992, 14: 1 -
43e
Skupińska J. Chem. Rev. 1991, 91: 613 -
43f
Piers WE.Shapiro PJ.Bunel EE.Bercaw JE. Synlett 1990, 74 -
43g
Pillai SM.Ravindranathan M.Sivaram S. Chem. Rev. 1986, 86: 353 - 44
Olivier-Bourbigou H.Saussine L. In Applied Homogeneous Catalysis with Organometallic Compounds 2nd ed., Vol. 1:Cornils B.Herrmann WA. Wiley-VCH; Weinheim: 2002. p.253-265 -
45a
Barlow MG.Bryant MJ.Haszeldine RN.Mackie AG. J. Organomet. Chem. 1970, 21: 215 -
45b
Kawamoto K.Tatani A.Imanaka T.Teranishi S. Bull. Chem. Soc. Jpn. 1971, 44: 1239 -
45c
Grenouillet P.Neibecker D.Tkatchenko I. Organometallics 1984, 3: 1130 -
45d
Sen A.Lai T.-W. Organometallics 1983, 2: 1059 -
45e
Wu G.Rheingold LA.Heck RF. Organometallics 1987, 6: 2386 -
45f
Kaneda K.Kiriyama T.Hiraoka T.Imanaka T. J. Mol. Catal. 1988, 48: 343 -
45g
Jiang Z.Sen A. J. Am. Chem. Soc. 1990, 112: 9655 -
45h
Jiang Z.Sen A. Organometallics 1993, 12: 1406 -
45i
Tsuchimoto T.Kamiyama S.Negoro R.Shirakawa E.Kawakami Y. Chem. Commun. 2003, 852 -
45j
Kabalka GW.Dong G.Venkataiah B. Tetrahedron Lett. 2004, 45: 2775 -
45k
Peng J.Li J.Qiu H.Jiang J.Jiang K.Mao J.Lai G. J. Mol. Catal. A: Chem. 2006, 255: 16 -
45l
Sui-Seng C.Groux LF.Zargarian D. Organometallics 2006, 25: 571 -
45m
Sui-Seng C.Castonguay A.Chen Y.Gareau D.Groux LF.Zargarian D. Top. Catal. 2006, 37: 81 -
46a
Dawans F. Tetrahedron Lett. 1971, 12: 1943 -
46b
Henrici-Olivé G.Olivé S.Schmidt E. J. Organomet. Chem. 1972, 39: 201 -
46c
Barthelemy P.Deffieux A.Sigwalt P. Nouv. J. Chim. 1985, 9: 173 - 47
Galdi N.Monica CD.Spinella A.Oliva L. J. Mol. Catal. A: Chem. 2006, 243: 106 - 48
Kretschmer WP.Troyanov SI.Meetsma A.Hessen B.Teuben JH. Organometallics 1998, 17: 284 - 49
Alderson T.Jenner EL.Lindsey RV. J. Am. Chem. Soc. 1965, 87: 5638 - For palladium-catalyzed reactions, see:
-
50a
Britovsek GJP.Keim W.Mecking S.Sainz D.Wagner T. J. Chem. Soc., Chem. Commun. 1993, 1632 -
50b
Britovsek GJP.Cavell KJ.Keim W. J. Mol. Catal. A: Chem. 1996, 110: 77 -
50c
Bayersdörfer R.Ganter B.Englert U.Keim W.Vogt D. J. Organomet. Chem. 1998, 552: 187 -
50d
Hovestad NJ.Eggeling EB.Heidbüchel HJ.Jastrzebski JTBH.Kragl U.Keim W.Vogt D.van Koten G. Angew. Chem. Int. Ed. 1999, 38: 1655 -
50e
Eggeling EB.Hovestad NJ.Jastrzebski JTBH.Vogt D.van Koten G. J. Org. Chem. 2000, 65: 8857 - For cobalt-catalyzed reactions, see:
-
51a
Pillai SM.Tembe GL.Ravindranathan M. J. Mol. Catal. 1993, 84: 77 -
51b
Umezaki H.Fujiwara Y.Sawara K.Teranishi S. Bull. Chem. Soc. Jpn. 1973, 46: 2230 -
51c
Yi CS.He Z.Lee DW. Organometallics 2001, 20: 802 -
52a
Wilke G. Angew. Chem., Int. Ed. Engl. 1988, 27: 185 ; and references therein -
52b
Kawata N.Maruya K.Mizoroki T.Ozaki A. Bull. Chem. Soc. Jpn. 1974, 47: 413 -
52c
Bogdanović B. Adv. Organomet. Chem. 1979, 17: 105 -
52d
Ceder R.Muller G.Ordinas JI. J. Mol. Catal. 1994, 92: 127 -
52e
Monteiro AL.Seferin M.Dupont J.de Souza RF. Tetrahedron Lett. 1996, 37: 1157 -
52f
Muller G.Ordinas JI. J. Mol. Catal. A: Chem. 1997, 125: 97 -
52g
Fassina V.Ramminger C.Seferin M.Monteiro AL. Tetrahedron 2000, 56: 7403 -
53a
Nomura N.Jin J.Park H.RajanBabu TV. J. Am. Chem. Soc. 1998, 120: 459 -
53b
Nandi M.Jin J.RajanBabu TV. J. Am. Chem. Soc. 1999, 121: 9899 -
53c
RajanBabu TV.Nomura N.Jin J.Radetich B.Park H.Nandi M. Chem. Eur. J. 1999, 5: 1963 -
53d
Jin J.RajanBabu TV. Tetrahedron 2000, 56: 2145 -
53e
Bösmann A.Franciò G.Janssen E.Solinas M.Leitner W.Wasserscheid P. Angew. Chem. Int. Ed. 2001, 40: 2697 -
53f
Park H.RajanBabu TV. J. Am. Chem. Soc. 2002, 124: 734 -
53g
Franciò G.Faraone F.Leitner W. J. Am. Chem. Soc. 2002, 124: 736 -
54a
RajanBabu TV. Chem. Rev. 2003, 103: 2845 ; and references therein -
54b
Bedford RB.Betham M.Blake ME.Garcés A.Millar SL.Prashar S. Tetrahedron 2005, 61: 9799 -
54c
Grutters MMP.Müller C.Vogt D. J. Am. Chem. Soc. 2006, 128: 7414 - For a review, see:
-
55a
Mitsudo T.Ura Y.Kondo T. J. Organomet. Chem. 2004, 689: 4530 -
55b
Mitsudo T.Ura Y.Kondo T. Chem. Rec. 2006, 6: 107 -
55c
Mitsudo T.Ura Y.Kondo T. Proc. Jpn. Acad., Ser. B 2007, 83: 65 , and references therein -
56a
Ura Y.Tsujita H.Wada K.Kondo T.Mitsudo T. J. Org. Chem. 2005, 70: 6623 -
56b
Tsujita H.Ura Y.Wada K.Kondo T.Mitsudo T. Chem. Commun. 2005, 5100 -
56c
Tsujita H.Ura Y.Matsuki S.Wada K.Mitsudo T.Kondo T. Angew. Chem. Int. Ed. 2007, 46: 5160 - 57
Mitsudo T.Suzuki T.Zhang S.-W.Imai D.Fujita K.Manabe T.Shiotsuki M.Watanabe Y.Wada K.Kondo T. J. Am. Chem. Soc. 1999, 121: 1839 - 58 Ruthenium-catalyzed head-to-tail dimerization of styrenes to 1,3-diaryl-1-butenes has recently been reported:
Higashimura M.Imamura K.Yokogawa Y.Sakakibara T. Chem. Lett. 2004, 33: 728 - 1,4-Diaryl-1-butenes are an important starting material for the synthesis of aryltetralins as well as a key intermediate for the construction of eight-membered-ring systems such as 2,2′-cyclolignans.
-
59a
Hajra S.Maji B.Karmakar A. Tetrahedron Lett. 2005, 46: 8599 -
59b
Kramer B.Averhoff A.Waldvogel SR. Angew. Chem. Int. Ed. 2002, 41: 2981 - 60
Kondo T.Takagi D.Tsujita H.Ura Y.Wada K.Mitsudo T. Angew. Chem. Int. Ed. 2007, 46: 5958 - 61 The formation of ruthenacyclopentane was proposed in ruthenium-catalyzed cyclization of 1,6-dienes.
Yamamoto Y.Nakagai Y.Ohkoshi N.Itoh K. J. Am. Chem. Soc. 2001, 123: 6372 -
62a
Lapointe AM.Rix FC.Brookhart M. J. Am. Chem. Soc. 1997, 119: 906 -
62b
Zambelli A.Pellecchia C.Proto A. Macromol. Symp. 1995, 89: 373 -
62c
Longo P.Proto A.Zambelli A. Macromol. Chem. Phys. 1995, 196: 3015 -
62d
Nelson JE.Bercaw JE.Labinger JA. Organometallics 1989, 8: 2484 -
62e
Burger BJ.Santarsiero BD.Trimmer MS.Bercaw JE. J. Am. Chem. Soc. 1988, 110: 3134 - 63 A theoretical study on σ-bond metathesis of Pd(II)-Me with MeOH has been reported:
Milet A.Dedieu A.Kapteijn G.van Koten G. Inorg. Chem. 1997, 36: 3223 - For lead references, see:
-
64a
Noyori R.Odagi T.Takaya H. J. Am. Chem. Soc. 1970, 92: 5780 -
64b
Huffman MA.Liebeskind LS. J. Am. Chem. Soc. 1993, 115: 4895 -
64c
Mitsudo T.Zhang S.-W.Watanabe Y. J. Chem. Soc., Chem. Commun. 1994, 435 -
64d
Chatani N.Morimoto T.Muto T.Murai S. J. Am. Chem. Soc. 1994, 116: 6049 -
64e
Murakami M.Takahashi K.Amii H.Ito Y. J. Am. Chem. Soc. 1997, 119: 9307 -
64f
Tsukada N.Shibuya A.Nakamura I.Yamamoto Y. J. Am. Chem. Soc. 1997, 119: 8123 -
64g
Kondo T.Kodoi K.Nishinaga E.Okada T.Morisaki Y.Watanabe Y.Mitsudo T. J. Am. Chem. Soc. 1998, 120: 5587 -
64h
Nishimura T.Uemura S. J. Am. Chem. Soc. 1999, 121: 11010 - 65
Murakami M.Amii H.Shigeto K.Ito Y. J. Am. Chem. Soc. 1996, 118: 8285 ; and references therein -
66a
Schmidt AH. Synthesis 1980, 961 -
66b
Moore HW.Decker OHW. Chem. Rev. 1986, 86: 821 -
66c
Liebeskind LS. Tetrahedron 1989, 45: 3053 -
66d
Moore HW.Yerxa BR. Chemtracts: Org. Chem. 1992, 5: 273 -
66e
Tempest PA.Armstrong RW. J. Am. Chem. Soc. 1997, 119: 7607 - 67 Squaric acid is also a quite attractive raw material from both synthetic and industrial perspectives:
West R. In Oxocarbons Academic Press; New York: 1980. -
68a
Liebeskind LS.Baysdon SL.South MS.Iyer S.Leeds JP. Tetrahedron 1985, 41: 5839 - For Ni, see:
-
68b
Hoberg H.Herrera A. Angew. Chem., Int. Ed. Engl. 1981, 20: 876 - 69
Burgess J.Haines RI.Hamner ER.Kemmitt RDW.Smith MAR. J. Chem. Soc., Dalton Trans. 1975. p.2579 ; and references - 70 Even in the formation of (maleoyl)metal complexes, RhCl(PPh3)3 is initially inserted into cyclobutenediones in an unsymmetrical fashion to give rhodacyclopentenedione as a kinetic product, see:
Liebeskind LS.Baysdon SL.South MS.Blount JF. J. Organomet. Chem. 1980, 202: C73 -
71a
Baysdon SL.Liebeskind LS. Organometallics 1982, 1: 771 -
71b
Liebeskind LS.Leeds JP.Baysdon SL.Iyer S. J. Am. Chem. Soc. 1984, 106: 6451 -
71c
Liebeskind LS.Jewell CF. J. Organomet. Chem. 1985, 285: 305 ; and references therein - 72
Liebeskind LS.Chidambaram R. J. Am. Chem. Soc. 1987, 109: 5025 - 73
Kondo T.Nakamura A.Okada T.Suzuki N.Wada K.Mitsudo T. J. Am. Chem. Soc. 2000, 122: 6319 - Coordination effect of an oxygen atom leading to C-H bond activation has been reported.
-
74a
McGuiggan MF.Pignolet LH. Inorg. Chem. 1982, 21: 2523 -
74b
Dauter Z.Mawby RJ.Reynolds CD.Saunders DR. J. Chem. Soc., Dalton Trans. 1985, 1235 -
74c
Shu AYL.Chen W.Heys JR. J. Organomet. Chem. 1996, 524: 87 - For a catalytic reaction, see:
-
74d
Murai S.Kakiuchi F.Sekine S.Tanaka Y.Kamatani A.Sonoda M.Chatani N. Nature 1993, 366: 529 - For a review, see:
-
75a
Potts KT.Baum JS. Chem. Rev. 1974, 74: 189 -
75b
Eicher T.Weber JL. Top. Curr. Chem. 1975, 57: 1 -
75c
Krebs AW. Angew. Chem., Int. Ed. Engl. 1965, 4: 10 -
75d
Yoshida Z.Konishi H. In Houben-Weyl: Methods of Organic Chemistry 4th ed., Vol. E17d:de Meijere A. Thieme; Stuttgart: 1997. Chap. 5. p.2983-3078 -
76a
Wong W.Singer SJ.Pitts WD.Watkins SF.Baddley WH. J. Chem. Soc., Chem. Commun. 1972, 672 -
76b
Visser JP.Ramakers-Blom JE. J. Organomet. Chem. 1972, 44: C63 -
76c
Foerstner J.Kakoschke A.Wartchow R.Butenschön H. Organometallics 2000, 19: 2108 - See also:
-
76d
Bird CW.Briggs EM. J. Chem. Soc. C 1967, 1862 -
76e
Fichteman WL.Schmidt P.Orchin M. J. Organomet. Chem. 1968, 12: 249 -
76f
Bird CW.Briggs EM. J. Organomet. Chem. 1974, 69: 311 -
77a
Song L.Arif AM.Stang PJ. Organometallics 1990, 9: 2792 -
77b
Gade LH.Memmler H.Kauper U.Schneider A.Fabre S.Bezougli I.Lutz M.G alka C.Scowen IJ.McPartlin M. Chem. Eur. J. 2000, 6: 692 - 78
Carroll WE.Green M.Howard JAK.Pfeffer M.Stone FGA. J. Chem. Soc., Dalton Trans. 1978, 1472 -
79a
Noyori R.Umeda I.Takaya H. Chem. Lett. 1972, 1189 -
79b
Baba A.Ohshiro Y.Agawa T. J. Organomet. Chem. 1976, 110: 121 -
79c
Baba A.Ohshiro Y.Agawa T. Chem. Lett. 1976, 11 -
79d
Ohshiro Y.Nanimoto H.Tanaka H.Komatsu M.Agawa T.Yasuoka N.Kai Y.Kasai N. Tetrahedron Lett. 1985, 26: 3015 -
79e
Chatani N.Hanafusa T. J. Org. Chem. 1987, 52: 4408 - 80
Kondo T.Kaneko Y.Taguchi Y.Nakamura A.Okada T.Shiotsuki M.Ura Y.Wada K.Mitsudo T. J. Am. Chem. Soc. 2002, 124: 6824 - 81
Barrow M.Cromhout NL.Manning AR.Gallagher JF. J. Chem. Soc., Dalton Trans. 2001, 1352 - 82
Jewell CF.Liebeskind LS.Williamson M. J. Am. Chem. Soc. 1985, 107: 6715 - 83
Hegedus LS. In Transition Metals in the Synthesis of Complex Organic Molecules 2nd Ed.: University Science Books; Sausalito: 1999. Chap. 6. p.143-186 - For a review, see:
-
84a
Moore HW.Yerxa BR. In Advances in Strain in Organic Chemistry Vol. 4:Halton B. JAI Press; London: 1995. p.81 -
84b
Shing TKM. In Houben-Weyl: Methods of Organic Chemistry 4th ed., Vol. E17f:de Meijere A. Thieme; Stuttgart: 1997. Chap. 8B. p.898-913 -
85a
Huffman MA.Liebeskind LS.Pennington WT. Organometallics 1990, 9: 2194 -
85b
Huffman MA.Liebeskind LS. J. Am. Chem. Soc. 1990, 112: 8617 -
85c
Huffman MA.Liebeskind LS. J. Am. Chem. Soc. 1991, 113: 2771 -
85d
Huffman MA.Liebeskind LS.Pennington WT. Organometallics 1992, 11: 255 - A thermal reaction of cyclobutenones with activated alkynes to phenols via a vinylketene intermediate has also been reported.
-
86a
Danheiser RL.Gee SK. J. Org. Chem. 1984, 49: 1672 -
86b
Danheiser RL.Nishida A.Savariar S.Trova MP. Tetrahedron Lett. 1988, 29: 4917 -
87a
Semmelhack MF.Tamura R.Schnatter W.Park J.Steigerwald M.Ho S. Stud. Org. Chem. 1986, 25: 21 -
87b
Gibson SE.Peplow MA. Adv. Organomet. Chem. 1999, 44: 275 ; and references therein - 88
Kondo T.Taguchi Y.Kaneko Y.Niimi M.Mitsudo T. Angew. Chem. Int. Ed. 2004, 43: 5369 - 89 Although it is not yet clear why the stereochemistry of 24 changed depending on the catalyst used, we now believe that the present isomerization of (η4-diene)metal intermediates to 2-pyranone 24 may proceed through addition-elimination of a H-[M] species to a 1,3-diene ligand, generating π-allylmetal intermediates. A π-allylrhodium intermediate has energetically favorable syn-type configuration leading to the selective formation of (E)-24, while a sterically congested anti-type π-allylruthenium species, which is also postulated as a key intermediate in our previously reported ruthenium-catalyzed codimerization of 1,3-dienes with acrylic compounds, could be generated to give (Z)-24 in good selectivity. See:
Mitsudo T.Zhang S.-W.Kondo T.Watanabe Y. Tetrahedron Lett. 1992, 33: 341 - 90 A related construction of phenols by the thermolysis of 4-alkenylcyclobutenones, which were prepared by palladium-catalyzed cross-coupling of 4-chlorocyclobutenones with alkenylstannyl and/or zinc reagents, has been reported.
Krysan DJ.Gurski A.Liebeskind LS. J. Am. Chem. Soc. 1992, 114: 1412 - 91
Kondo T.Niimi M.Nomura M.Wada K.Mitsudo T. Tetrahedron Lett. 2007, 48: 2837 - 92 For a review, see:
Rigby JH. Synlett 2000, 1 -
93a
Torres M.Gil S.Parra M. Curr. Org. Chem. 2005, 9: 1757 -
93b
Gorobets NY.Yousefi BH.Belaj F.Kappe CO. Tetrahedron 2004, 60: 8633 - 94
Varela JA.Saá C. Chem. Rev. 2003, 103: 3787 -
95a
Hong P.Yamazaki H. Synthesis 1977, 50 -
95b
Hong P.Yamazaki H. Tetrahedron Lett. 1977, 18: 1333 -
96a
Hoberg H.Oster BW. Synthesis 1982, 324 -
96b
Hoberg H.Oster BW. J. Organomet. Chem. 1982, 234: C35 -
96c
Hoberg H.Oster BW. J. Organomet. Chem. 1983, 252: 359 - For cobalt catalysts, see:
-
97a
Earl RA.Vollhardt KPC. J. Am. Chem. Soc. 1983, 105: 6991 -
97b
Earl RA.Vollhardt KPC. J. Org. Chem. 1984, 49: 4786 -
97c
Diversi P.Ingrosso G.Lucherini A.Malquori S. J. Mol. Catal. 1987, 40: 267 - 98 For nickel catalysts, see:
Duang HA.Cross MJ.Louie J. J. Am. Chem. Soc. 2004, 126: 11438 ; and references therein -
99a
Takahashi T.Tsai F.-Y.Li Y.Wang H.Kondo Y.Yamanaka M.Nakajima K.Kotora M. J. Am. Chem. Soc. 2002, 124: 5059 -
99b
Li Y.Yamanaka M.Takahashi T. Tetrahedron 2004, 60: 1393 -
100a
Yamamoto Y.Kinpara K.Saigoku T.Takagishi H.Okuda S.Nishiyama H.Itoh K. J. Am. Chem. Soc. 2005, 127: 605 - A theoretical study was also reported by Kirchner and co-worker, see:
-
100b
Schmid R.Kirchner K. J. Org. Chem. 2003, 68: 8339 - 101
Flynn ST.Hasso-Henderson SE.Parkins AW. J. Mol. Catal. 1985, 32: 101 - 102
Tanaka K. Synlett 2007, 1977 ; and references therein - 103
Evans FA. In Modern Rhodium-Catalyzed Organic Reactions 4th ed.: Wiley-VCH; Weinheim: 2003. p.129-149 - 104 Most recently, the unusual [2+2+2] cocyclization of alkenylisocyanates and alkynes via CO migration has been reported by Rovis and co-worker, see:
Yu RT.Rovis T. Am. Chem. Soc. 2006, 128: 2782 - 105
Kondo T.Nomura M.Ura Y.Wada K.Mitsudo T. Tetrahedron Lett. 2006, 47: 7107 -
107a
Gibson SE.Stevenazzi A. Angew. Chem. Int. Ed. 2003, 42: 1800 -
107b
Park KH.Chung YK. Synlett 2005, 545 -
107c
Laschat S.Becheanu A.Bell T.Baro A. Synlett 2005, 2547 -
108a
Cao H.Van Omum SG.Deschamps J.Flippen-Anderson J.Laib F.Cook JM. J. Am. Chem. Soc. 2005, 127: 933 -
108b
Brummond KM.Curran DP.Mitasev B.Fischer S. J. Org. Chem. 2005, 70: 1745 -
108c
Mukai C.Inagaki F.Yoshida T.Yoshitani K.Hara Y.Kitagaki S. J. Org. Chem. 2005, 70: 7159 - For a recent review, see:
-
108d
Alcaide B.Almendros P. Eur. J. Org. Chem. 2004, 3377 -
108e
Ma S. Chem. Rev. 2005, 105: 2829 -
109a
Crowe WE.Vu AT. J. Am. Chem. Soc. 1996, 118: 1557 -
109b
Kablaoui NM.Hicks FA.Buchwald SL. Am. Chem. Soc. 1996, 118: 5818 -
109c
Kablaoui NM.Hicks FA.Buchwald SL. J. Am. Chem. Soc. 1997, 119: 4424 -
109d
Chatani N.Morimoto T.Fukumoto Y.Murai S. J. Am. Chem. Soc. 1998, 120: 5335 -
109e
Chatani N.Tobisu M.Asaumi T.Fukumoto Y.Murai S. J. Am. Chem. Soc. 1999, 121: 7160 -
109f
Tobisu M.Chatani N.Asaumi T.Amako K.Ie Y.Fukumoto Y.Murai S. J. Am. Chem. Soc. 2000, 122: 12663 - 110
Chatani N.Morimoto T.Kamitani A.Fukumoto Y.Murai S. J. Organomet. Chem. 1999, 579: 177 - 111
Saito T.Shiotani M.Otani T.Hasaba S. Heterocycles 2003, 60: 1045 - 112
Mukai C.Yoshida T.Sorimachi M.Odani A. Org. Lett. 2006, 8: 83 - 113
Ohshiro Y.Kinugasa K.Minami T.Agawa T. J. Org. Chem. 1970, 35: 2136 - 114
Kondo T.Nomura M.Ura Y.Wada K.Mitsudo T. J. Am. Chem. Soc. 2006, 128: 14816 - 115
Weissermel K.Alpe H.-J. In Industrial Organic Chemistry 4th ed.: Wiley-VCH; Weinheim: 2003. p.368-375 -
116a
Pontrello JK.Allen MJ.Underbakke ES.Kiessling LL. J. Am. Chem. Soc. 2005, 127: 14536 -
116b
Zhang X.Li Z.-C.Wang Z.-M.Sun H.-L.He Z.Li K.-B.Wei LH.Lin S.Du F.-S.Li F.-M. J. Polym. Sci., Polym. Chem. Ed. 2006, 44: 304 -
117a
Kalgutkar AS.Crews BC.Marnett LJ. J. Med. Chem. 1996, 39: 1692 -
117b
Yang W.Auciello O.Butler JE.Cai W.Carlisle JA.Gerbi JE.Gruen DM.Knickerbocker T.Lasseter TL.Russell JN.Smith LM.Hamers RJ. Nat. Mater. 2002, 1: 253 - 118
Stockis A.Hoffmann R. J. Am. Chem. Soc. 1980, 102: 2952 -
119a
Hartwig JF.Bergman RG.Andersen RA. J. Am. Chem. Soc. 1991, 113: 6499 -
119b
Hanna TA.Baranger AM.Bergman RG. J. Org. Chem. 1996, 61: 4532
References
After the reaction, phenyl isocyanate (28a) still remained; however, longer reaction time did not improve neither the conversion of 28 nor the yield of 29. In the present reaction, decarbonylation of isocyanates occurred to some extent. The generated carbon monoxide may coordinate to an active rhodium species leading to deactivation of the rhodium catalyst, which accords well with the low catalytic activity of RhCl(CO)(PPh3)2