RSS-Feed abonnieren
DOI: 10.1055/s-2008-1042897
Copper-Catalyzed, Palladium-Free Carbonylative Sonogashira Coupling Reaction of Aliphatic and Aromatic Alkynes with Iodoaryls
Publikationsverlauf
Publikationsdatum:
11. März 2008 (online)
Abstract
Copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) catalyzed carbonylative Sonogashira coupling reactions of aliphatic/aromatic alkynes with iodoaryls are reported for the first time. The protocol eliminates the use of a toxic, air-sensitive, and expensive Pd-phosphine-based catalytic system, and provides high yields of desired products.
Key words
Sonogashira - carbonylation - iodoaryls - alkynes - copper
-
1a
Aljallo NH.Al-Azani FW. J. Heterocycl. Chem. 1974, 1101 -
1b
Sheng H.Lin S.Huang Y. Tetrahedron Lett. 1986, 27: 4893 -
1c
Trost BM.Schmidt T. J. Am. Chem. Soc. 1988, 110: 2301 -
1d
Jeevandandam A.Narkunan K.Cartwright C.Ling YC. Tetrahedron Lett. 1999, 40: 4841 -
1e
Kel’in AV.Sromek AW.Gevorgyan V. J. Am. Chem. Soc. 2001, 123: 2074 -
1f
Chang K.-T.Choi S.-H.Yoon Y.-J.Lee WS. J. Chem. Soc., Perkin Trans. 1 2002, 207 -
1g
Kel’in AV.Gevorgyan V. J. Org. Chem. 2002, 67: 95 - 2
Fontaine M.Chauvelier J.Barchewitz P. Bull. Soc. Chim. Fr. 1962, 2145 - 3
Schmidt U.Schwochau M. Chem. Ber. 1964, 97: 1649 -
4a
Yashina OG.Kaigorodova TD.Zarva TV.Vereshechagin LI. Zh. Org. Khim. 1968, 4: 1904 -
4b
Yashina OG.Kaigorodova TD.Zarva TV.Vereshechagin LI. Zh. Org. Khim. 1968, 4: 2104 - 5
Vereshechagin LI.Yashina OG.Zarva TV. Zh. Org. Khim. 1966, 2: 1895 -
6a
Normant JF. Synthesis 1972, 63 -
6b
Logue MW.Moore GL. J. Org. Chem. 1975, 40: 131 - 7
Logue MW.Teng K. J. Org. Chem. 1982, 47: 2549 -
8a
Shi S.Zhang Y. Synlett 2007, 1843 -
8b
Altenhoff G.Würtz S.Glorius F. Tetrahedron Lett. 2006, 47: 2925 -
8c
Li P.-H.Wang L. Adv. Synth. Catal. 2006, 348: 681 -
9a
Colacino E.Daïch L.Martinez J.Lamaty F. Synlett 2007, 1279 -
9b
Saejueng P.Bates CG.Venkataraman D. Synthesis 2005, 1706 -
9c
Thathagar MB.Beckers J.Rothenberg G. Green Chem. 2004, 6: 215 -
9d
Li J.-H.Li J.-L.Wang D.-P.Pi S.-F.Xie Y.-X.Zhang M.-B.Hu X.-C. J. Org. Chem. 2007, 72: 2053 -
9e
Ma D.Liu F. Chem. Commun. 2004, 1934 - 10
Kang SK.Lim KH.Ho PS.Kim WY. Synthesis 1997, 874 - 11
Kobayashi T.Tanaka M. J. Chem. Soc., Chem. Commun. 1981, 333 - 12
Delaude L.Masdeu AM.Alper H. Synthesis 1994, 1149 - 13
Mohamed Ahmed MS.Mori A. Org. Lett. 2003, 5: 3057 - 14
Liang B.Huang M.You Z.Xiong Z.Lu K.Fathi R.Chen J.Yang Z. J. Org. Chem. 2005, 70: 6097 - 15
Rahman MT.Fukuyama T.Kamata N.Sato M.Ryu I. Chem. Commun. 2006, 2236 -
16a
Nandurkar NS.Bhanushali MJ.Bhor MD.Bhanage BM. Tetrahedron Lett. 2007, 48: 6573 -
16b
Nandurkar NS.Bhanushali MJ.Bhor MD.Bhanage BM. Tetrahedron Lett. 2008, 49: 1045 -
16c
Purecha VH.Nandurkar NS.Bhanage BM.Nagarkar JM. Tetrahedron Lett. 2008, 49: 1384
References and Notes
Typical Procedure for the Preparation of Cu(TMHD)
2
NaOH (22 mmol) was dissolved in MeOH (20 mL) with stirring and the resulting solution was cooled to r.t., followed by addition of TMHD (20 mmol). To the mixture, a solution obtained by dissolving Cu(NO3)2·6H2O (10 mmol) in MeOH (20 mL) was added over a period of 30 min. The reaction mixture was stirred for 6 h and the resulting precipitate was filtered and dried. Yield 93%, mp 196-198 °C.
General Procedure
To an 100 mL autoclave, phenylacetylene (3.0 mmol), iodobenzene (2.0 mmol), Cu(TMHD)2 (0.1 mmol), toluene (10 mL) and Et3N (6.0 mmol) were added. The mixture was first stirred for 10 min, then the vessel pressures 8-20 atm of CO and the reaction mixture was heated at 90 °C for 14 h. After the reaction was complete, the mixture was extracted with EtOAc (3 × 10 mL), the combined organic extracts were dried over Na2SO4, and the solvent was removed under vacuum. The residue obtained was purified by column chromatography (silica gel, 60-120 mesh) using PE (60:80)-EtOAc as eluent to afford the pure products. All the compounds are known and were characterized by GC-MS (Shimadzu) and NMR (Varian 300 MHz).
Spectroscopic Data of Representative Compounds
Table 2, Entry 1: GC-MS: m/z (%) = 206 [M+], 178, 129 (100). 1H NMR (300 MHz, CDCl3, 25 °C): δ = 7.49-7.54 (m, 5 H), 7.61-7.63 (m, 1 H), 7.68-7.70 (m, 2 H), 8.23 (ddd, J = 8.4, 2.1, 1.2, 2 H) ppm. 13C NMR (70 MHz, CDCl3, 25 °C): δ = 87.0, 93.2, 120.2, 128.8, 128.8, 129.2, 130.9, 133.2, 134.3, 137.0, 178.1 ppm.
Table 2, Entry 2: GC-MS: m/z (%) = 220 [M+], 192 (100), 165, 129. 1H NMR (300 MHz, CDCl3, 25 °C): δ = 2.44 (s, 3 H), 7.29-7.44 (m, 5 H), 7.67 (d, J = 8.4 Hz, 2 H), 8.11 (d, J = 8.4 Hz, 2 H) ppm. 13C NMR (70 MHz, CDCl3, 25 °C ):
δ = 21.9, 87.0, 92.7, 120.3, 128.8, 129.4, 129.9, 130.8, 133.1, 134.7, 145.3, 177.8 ppm.
Table 3, Entry 1: GC-MS: m/z (%) = 186 [M+], 105 (100), 77. 1H NMR (300 MHz, CDCl3, 25 °C): δ = 0.98 (t, J = 2.8, 4.8, 7.2, 3 H), 1.26-1.33 (m, 2 H), 1.63-1.69 (m, 2 H), 2.51 (t, J = 7.2, 6.8, 2 H), 7.460-7.59 (m, 3 H), 8.12-8.15 (m, 2 H) ppm. 13C NMR (70 MHz, CDCl3, 25 °C): δ = 13.7, 19.1, 22.7, 29.9, 80.0, 97.0, 128.6, 129.7, 131.8, 134.0, 178.1 ppm.