RSS-Feed abonnieren
DOI: 10.1055/s-2008-1042904
Synthesis of 2′,3′-Dideoxy-2′-Fluoro-4′-Thionucleosides from a Fluoroxanthate
Publikationsverlauf
Publikationsdatum:
11. März 2008 (online)
Abstract
The synthesis of a thiobutyrolactone as precursor of modified nucleosides is reported from a fluoroxanthate and a protected allylic alcohol. This approach opens a new and straightforward route for the synthesis of 2′,3′-dideoxy-2′-fluoro-4′-thiothymidine derivatives in few steps, including the formation of a fluorothiolactone and a Vorbrüggen thymine base alkylation reaction.
Key words
fluorine - free radical - nucleosides - lactones
-
1a
Simons C. Nucleoside Mimetics, In Advanced Chemistry Texts Vol. 3: Gordon and Breach Science Publishers; Amsterdam: 2001. -
1b
Isanbor C.O’Hagan D. J. Fluorine Chem. 2006, 127: 303 -
1c
Clark JL.Mason JC.Hollecker L.Stuyver LJ.Tharnish PM.McBrayer TR.Otto MJ.Furman PA.Schinazi RF.Watanabe KA. Bioorg. Med. Chem. Lett. 2006, 16: 1712 -
1d
Jeannot F.Gosselin G.Mathé C. Org. Biomol. Chem. 2003, 1: 2096 - 2
Yokoyama M. Synthesis 2000, 1637 - 3
Len C.Mackenzie G. Tetrahedron 2006, 62: 9085 -
4a
Rahim SG.Trivedi N.Bogunovic-Batchelor MV.Hardy GW.Mills G.Selway JWT.Snowden W.Littler E.Coe PL.Basnak I.Whale RF.Walker RT. J. Med. Chem. 1996, 39: 789 -
4b
Hertel LW.Kroin JS.Misner JW.Tustin JM. J. Org. Chem. 1988, 53: 2406 -
5a
Otter GP.Elzagheid MI.Jones GD.MacCulloch AC.Walker RT.Oivanen M.Klika KD. J. Chem. Soc., Perkin Trans. 2 1998, 2343 -
5b
Tuttle JV.Tisdale M.Krenitsky TA. J. Med. Chem. 1993, 36: 119 - 6
McAtee JJ.Schinazi RF.Liotta DC. J. Org. Chem. 1998, 63: 2161 -
7a
Gouault S.Pommelet JC.Lequeux T. Synlett 2002, 996 -
7b
Jean-Baptiste L.Yemets S.Legay R.Lequeux T. J. Org. Chem. 2006, 71: 2352 -
8a
Jin F.Wang D.Confalone PN.Pierce ME.Wang Z.Xu G.Choudhury A.Nguyen D. Tetrahedron Lett. 2001, 42: 4787 -
8b
Caille JC.Miel H.Armstrong P.McKervey MA. Tetrahedron Lett. 2004, 45: 863 -
8c
Huang JT.Chen LC.Wang L.Kim MH.Warshaw JA.Armstrong D.Zhu QY.Chou TC.Watanabe KA.Matulic-Adamic J.Su TL.Fox JJ.Polsky B.Baron PA.Gold JWM.Hardy WD.Zuckerman E. J. Med. Chem. 1991, 34: 1640 -
8d
Jeong LS.Marquez VE. J. Org. Chem. 1995, 60: 4276 -
8e
Watanabe KA.Reichman U.Hirota K.Lopez C.Fox JJ. J. Med. Chem. 1979, 22: 21 -
8f
Boydell AJ.Vinader V.Linclau B. Angew. Chem. Int. Ed. 2004, 43: 5677 -
9a
Seaong LS.Marquez VE. Chem. Lett. 1995, 301 -
9b
Watts JK.Sadalapure K.Choubdar N.Pinto BM.Damha MJ. J. Org. Chem. 2006, 71: 921 -
9c
Katayama S.Takamatsu S.Naito M.Tanji S.Ineyama T.Izawa K. J. Fluorine Chem. 2006, 127: 524 -
9d
Takamatsu S.Maruyama T.Katayama S.Hirose N.Naito M.Izawa K. J. Org. Chem. 2001, 66: 7469 -
10a
Jeong LS.Moon HR.Yoo SJ.Lee SN.Chun MW.Lim YH. Tetrahedron Lett. 1998, 39: 5201 -
10b
Yoshimura Y.Endo M.Sakata S. Tetrahedron Lett. 1999, 40: 1937 -
11a
Yoshimura Y.Kitano K.Yamada K.Satoh H.Watanabe M.Miura S.Sakata S.Sasaki T.Matsuda A. J. Org. Chem. 1997, 62: 3140 -
11b
Zheng F.Zhang XH.Qiu XL.Zhang X.Qing FL. Org. Lett. 2006, 8: 6083 - 12
Boivin J.Ramos L.Zard SZ. Tetrahedron Lett. 1998, 39: 6877 - 13
Syvret RG.Vassilaros DL.Parees DM.Pez GP.
J. Fluorine Chem. 1994, 67: 277 -
15a
Annedi SC.Li W.Samson S.Kotra LP. J. Org. Chem. 2003, 68: 1043 -
15b
Gouault S.Guérin C.Lemoucheux L.Lequeux T.Pommelet JC. Tetrahedron Lett. 2003, 44: 5061 - 17
Brown MD.Gillon DW.Meakins GD.Whitham GH. J. Chem. Soc., Perkin Trans. 1 1985, 1623 -
18a
Choo H.Chong Y.Choi Y.Mathew J.Schinazi RF.Chu CK. J. Med. Chem. 2003, 46: 389 -
18b
Young RJ, andMiller JA. inventors; EP 514036. ; Chem. Abstr. 1993, 118, 169532 - 21
Van Steenis JH.van der Gen A. J. Chem. Soc., Perkin Trans. 1 2002, 2117 -
22a
Zard SZ. Angew. Chem., Int. Ed. Engl. 1997, 36: 672 -
22b
Quiclet-Sire B.Zard SZ. Chem. Eur. J. 2006, 12: 6002
References and Notes
Experimental for 3b A solution of O-benzyl allylic alcohol 2b (1.08 g, 7.28 mmol, 1.1 equiv), and xanthate 1 (1.50 g, 6.62 mmol, 1 equiv) in deoxygenated DCE (80 mL) was heated at 85 °C (oil bath). A solution of lauroyl peroxide (0.79 g, 1.99 mmol, 0.3 equiv) in deoxygenated DCE (20 mL) was added dropwise (over 2 h by using a syringe pump), then the mixture was stirred 30 min. The solution was cooled to r.t., and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (pentane-EtOAc, 95:5) to afford 3b as a mixture of diastereomers (1.54 g, 62%, 1:1) as a light yellow liquid.1H NMR (250 MHz, CDCl3): δ = 1.32 [t, 6 H, 3 J HH = 7.1 Hz, CH3 (2 dia)], 1.40 [t, 3 J HH = 7.1 Hz, 6 H, CH3 (2 dia)], 2.12-2.75 [m, 4 H, CH 2 CHF (2 dia)], 3.80-3.99 [m, 4 H, CH2O (2 dia)], 4.03-4.16 [m, 2 H, CHS (2 dia)], 4.27 [q, 3 J HH = 7.1 Hz, 4 H, CH2 (2 dia)], 4.56 [s, 4 H, PhCH2O (2 dia)], 4.59 [q, 3 J HH = 7.1 Hz, 2 H, CH2 (dia 1)], 4.60 [q, 3 J HH = 7.1 Hz, 2 H, CH2 (dia 2)], 5.00 [ddd, 2 J HF = 49.0 Hz, 3 J HH = 8.4 Hz, 3 J HH = 4.1 Hz, 1 H, CHF (dia 1)], 5.08 [ddd, 2 J HF = 49.0 Hz, 3 J HH = 10.2 Hz, 3 J HH = 2.9 Hz, 1 H, CHF (dia 2)], 7.25-7.35 [m, 10 H, Ph (2 dia)]. 19F NMR (235 MHz, CFCl3, CDCl3): δ = -191.46 [ddd, 2 J HF = 49.0 Hz, 3 J HF = 28.0 Hz, 3 J HF = 20.0 Hz, 1 F, (dia 1)], -191.42 [ddd, 2 J HF = 49.0 Hz, 3 J HF = 36.0 Hz, 3 J HF = 16.0 Hz, 1 F, (dia 2)]. 13C NMR (62.5 MHz, CDCl3): δ = 12.7, 13.1 (s, CH3), 32.85 [d, 2 J CF = 20.6 Hz, CH2 (dia 1)], 32.2 [d, 2 J CF = 20.9 Hz, CH2 (dia 2)], 44.9, 45.4 (s, CHS), 60.7, 69.1, 69.2, 69.6, 70.7, 71.9 (s, OCH2), 85.8 [d, 1 J CF = 184.5 Hz, CF (dia 1)], 85.9 [d, 1 J CF = 184.8 Hz, CF (dia 2)], 126.6, 126.7, 127.1, 136.7 (s, Ph), 168.3 [d, 2 J CF = 23.9 Hz, C=O (dia 1)], 168.5 [d, 2 J CF = 23.3 Hz, C=O (dia 2)], 211.7 [C=S (dia 1)], 211.8 [C=S (dia 2)]. MS (ESI, 9 eV): m/z 375 (73) [M + H]+, 329 (18), 269 (26), 267 (61), 251 (49), 223 (100), 207 (25), 163 (35), 91 (20). ESI-HRMS: m/z [M + H]+ calcd for C17H24FO4S2: 375.1100; found: 375.1099.
16The 19F NMR spectra of the crude mixture revealed two multiplets: -188.2 (dddd, 2 J FH = 49.4 Hz, 3 J FH = 25.9 Hz, 3 J FH = 21.2 Hz, 4 J F-NH = 4.7 Hz) and -191.0 (dddd, 2 J FH = 49.4 Hz, 3 J FH = 40.0 Hz, 3 J FH = 16.5 Hz, 4 J F-NH = 4.7 Hz).
19
Typical Procedure: Preparation of the γ-Thiobutyro-lactone 6b
Trifluoroacetic acid (1 mL, 13.46 mmol) was added to a solution of thiol 5b (0.20 g, 0.7 mmol) in CH2Cl2 (5 mL). The mixture was stirred for 18 h at 20 °C, then poured into a sat. aq NaCl soln (10 mL). The aqueous layer was extracted twice with CH2Cl2 (10 mL), and the organic layer was dried (MgSO4) then the solvent was evaporated. The crude product was purified by flash column chromatography on silica (pentane-EtOAc, 95:5) to afford the less polar isomer 2,4-trans
-6b (68 mg, 0.28 mmol, 40%) and the more polar isomer 2,4-cis
-6b (52 mg, 0.22 mmol, 31%).
γ-Thiobutyrolactone 2,4-trans
-6b: 1H NMR (250 MHz, CDCl3): δ = 2.30-2.40 (m, 2 H, H3), 3.50-3.75 (m, 2 H, H5), 4.20 (m, 1 H, H4), 4.50 (s, 2 H, OCH2Ph), 5.15 (ddd, 2
J
HF = 51.2 Hz, 3
J
HH = 3
J
HH = 6.8 Hz, 1 H, H2) 7.15-7.35 (m, 5 H, Ph). 19F NMR (235 MHz, CFCl3, CDCl3): δ = -184.65 (ddd, 2
J
HF = 51.2 Hz, 3
J
HF = 3
J
HF = 18.8 Hz). 13C NMR (62.5 MHz, CDCl3): δ = 32.6 (d, 2
J
CF = 20.8 Hz, C3), 42.0 (d, 3
J
CF = 5.9 Hz, C4), 71.2, 75.0, 93.0 (d, 1
J
CF = 190.2 Hz, C2), 127.5, 128.0, 128.9, 137.5 (s, Ph), 200.7 (d, 2
J
CF = 17.4 Hz, C1).
γ-Thiobutyrolactone 2,4-cis
-6b: 1H NMR (250 MHz, CDCl3): δ = 2.18 (m, 1 H, H3), 2.71 (m, 1 H, H3’), 3.62 (m, 1 H, H5), 3.80 (m, 1 H, H5
′), 3.95 (m, 1 H, H4), 4.57 (s, 2 H, OCH2Ph), 5.10 (ddd, 2
J
HF = 50.4 Hz, 3
J
HH = 9.8 Hz, 3
J
HH = 6.8 Hz, 1 H, H2), 7.15-7.35 (m, 5 H, Ph). 19F NMR (235 MHz, CFCl3, CDCl3): δ = -183.7 (ddd, 2
J
HF = 50.4 Hz, 3
J
HF = 18.8 Hz, 3
J
HF = 9.4 Hz). 13C NMR (62.5 MHz, CDCl3): δ = 33.6 (d, 2
J
CF = 19.6 Hz, C3), 42.6 (d, 3
J
CF = 7.2 Hz, C4), 71.7, 74.8, 93.3 (d, 1
J
CF = 196.2 Hz, C2), 127.5, 127.9, 128.9, 137.6 (s, Ph), 201.7 (d, 2
J
CF = 17.6 Hz, C1). IR (NaCl): ν = 1714 (C=O) cm-1. ESI-HRMS: m/z [M + Na]+ calcd for C12H13FNaO2S: 263.0518; found: 263.0525.
Selected Analytical Data for the Four Isomers of 9b
1H NMR (250 MHz, CDCl3): δ = 1.79 [s, 3 H, CH3 (dia 1)], 1.86 ]s, 3 H, CH3 (dia 2)], 1.93 [s, 3 H, CH3 (dia 3)], 1.97 [s, 3 H, CH3 (dia 4)], 1.75-2.62 [m, 8 H, CH
2CHF (4 dia)], 3.58-4.10 (m, 12 H, CHCH2OBn and CH2OBn (4 dia)], 4.48-4.56 [m, 8 H, CH2Ph (4 dia)], 5.18 (br d, 2
J
HF = 49.4 Hz, 2 H, H2
′ (2 dia)], 5.20 (br d, 2
J
HF = 54.1 Hz, 2 H, H2
′ (2 dia)], 6.17 (dd, 3
J
HF = 12.5 Hz, 3
J
HH = 4.0 Hz, 1 H, H1
′ (dia 1)], 6.19 (dd, 3
J
HF = 10.6 Hz, 3
J
HH = 1.4 Hz, 1 H, H1
′ (dia 2)], 6.40 (dd, 3
J
HF = 19.9 Hz, 3
J
HH = 4.2 Hz, 1 H, H1
′ (dia 3)], 6.44 (dd, 3
J
HF = 12.5 Hz, 3
J
HH = 3.7 Hz, 1 H, H1
′ (dia 4)], 7.19-7.34 [m, 20 H, Ph (4 dia)], 7.59 [s, 2 H, CHCH3 (2 dia)], 7.93 [s, 2 H, CHCH3 (2 dia)] 9.40-9.70 (br s, 4 H, NH). 19F NMR (235 MHz, CFCl3, CDCl3): δ = -171.54 [m (dia 1)], -175.88 [dddd, 2
J
HF = 49.4 Hz, 3
J
HF = 40.0 Hz, 3
J
HF = 14.1 Hz, 3
J
HF = 10.6 Hz (dia 2)], -187.00 [m (dia 3)], -190.75 [ddddd, 2
J
HF = 54.1 Hz, 3
J
HF = 42.4 Hz, 3
J
HF = 23.5 Hz, 3
J
HF = 12.5 Hz, 4
J
HF = 2.4 Hz (dia 4)]. ESI-HRMS: m/z
[M + H]+ calcd for C17H20FN2O3S: 351.1179 [M + H]+; found: 351.1180 [M + H]+.