Synthesis 2008(15): 2446-2450  
DOI: 10.1055/s-2008-1067163
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Monofunctionalized p-Quaterphenyls

Ivonne Wallmanna, Manuela Schiekb, Rainer Kochc, Arne Lützen*a
a Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
Fax: +49(228)739608; e-Mail: arne.luetzen@uni-bonn.de;
b Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
c Institute of Pure and Applied Chemistry, Centre of Interphase Science, University of Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany
Weitere Informationen

Publikationsverlauf

Received 28 February 2008
Publikationsdatum:
08. Juli 2008 (online)

Abstract

p-Oligophenyls have proven to be versatile building blocks for the generation of self-assembled nanoaggregates via vapor deposition on solid supports whose optical properties and morphologies can be influenced by the introduction of functional groups. Nonsymmetrically functionalized p,p′-disubstituted derivatives could even be demonstrated to form nanoaggregates that can act as frequency doublers due to their nonlinear optical properties.

Similar properties can be expected from monofunctionalized derivatives. Thus, we developed a general approach for the synthesis of monofunctionalized 1,1′:4′,1′′:4′′,1′′′-quaterphenyls (p-quaterphenylenes) through the application of a reliable Suzuki cross-coupling strategy.

    References

  • 1a Schwab PFH. Levin MD. Michl J. Chem. Rev.  1999,  99:  1863 
  • 1b Schwab PFH. Smith JR. Michl J. Chem. Rev.  2005,  105:  1197 
  • 2 Ziegler G. In Handbook of Organic Conductive Molecules and Polymers   Vol. 3:  Nalwa HS. Wiley; New York: 1997.  Chap. 13.
  • 3a Krause B. Dürr AC. Ritley K. Schreiber F. Dosch H. Smilgies D. Phys. Rev. B: Condens. Matter Mater. Phys.  2002,  66:  235404 
  • 3b Würthner F. Chem. Commun.  2004,  1564 
  • 4 Bendikov M. Wudl F. Perepichka DF. Chem. Rev.  2004,  104:  4891 
  • 5a James DK. Tour JM. Top. Curr. Chem.  2005,  257:  33 
  • 5b Resel R. Thin Solid Films  2003,  433 1 
  • 5c Balzer F. Rubahn H.-G. Adv. Funct. Mater.  2005,  14:  17 
  • 5d Balzer F. Rubahn H.-G. Phys. Unserer Zeit  2005,  36:  36 
  • 6a Müllen K. Wegner G. Electronic Materials: The Oligomer Approach   Wiley-VCH; Weinheim: 1998. 
  • 6b Fichou D. Handbook of Oligo- and Polythiophenes   Wiley-VCH; Weinheim: 1999. 
  • 6c Nalva HS. Handbook of Advanced Electronic and Photonic Materials and Devices   Academic Press; San Diego: 2000. 
  • 6d Witte G. Woell C. J. Mater. Res.  2004,  19:  1889 
  • 6e Hertel D. Müller CD. Meerholz K. Chem. Unserer Zeit  2005,  39:  336 
  • 6f Müllen K. Scherf U. Organic Light Emitting Devices - Synthesis,Properties and Applications   Wiley-VCH; Weinheim: 2006. 
  • 6g Klauk H. Organic Electronics - An Industrial Perspective   Wiley-VCH; Weinheim: 2006. 
  • 6h Al-Shamery K. Rubahn H.-G. Sitter H. Organic Nanostructures for Next Generation Devices   Springer Series in Material Science 101; Berlin: 2008. 
  • 7a Balzer F. Rubahn H.-G. Appl. Phys. Lett.  2001,  79:  2860 
  • 7b Balzer F. Rubahn H.-G. Surf. Sci.  2002,  507:  588 
  • 8a Schiek M. Balzer F. Al-Shamery K. Lützen A. Rubahn H.-G. Soft Matter  2008,  4:  277 
  • 8b Schiek M. Balzer F. Al-Shamery K. Brewer J. Rubahn H.-G. Small  2008,  4:  176 
  • 9 Schiek M. Al-Shamery K. Lützen A. Synthesis  2007,  613 
  • 10a Schiek M. Lützen A. Koch R. Al-Shamery K. Balzer F. Frese R. Rubahn H.-G. Appl. Phys. Lett.  2005,  86:  153107 
  • 10b Schiek M. Lützen A. Al-Shamery K. Balzer F. Rubahn H.-G. Surf. Sci.  2006,  600:  4030 
  • 10c Schiek M. Lützen A. Al-Shamery K. Balzer F. Rubahn H.-G. Crystal Growth Des.  2007,  7:  229 
  • 11 Brewer J. Schiek M. Lützen A. Al-Shamery K. Rubahn H.-G. Nano Lett.  2006,  6:  2656 
  • 13 Schmidt H. Schultz G. Justus Liebigs Ann. Chem.  1880,  203:  129 
  • 14a Scheinbaum ML. J. Chem. Soc., Chem. Commun.  1969,  1235 
  • 14b Pavlopoulos TG. Hammond PR. J. Am. Chem. Soc.  1974,  96:  6568 
  • 14c Péres LO. Guileet F. Froyer G. Org. Biomol. Chem.  2004,  2:  452 
  • 17a Fran J. Karakaya B. Schäfer A. Schlüter AD. Tetrahedron  1997,  53:  15459 
  • 17b Hensel V. Schlüter A.-D. Chem. Eur. J.  1999,  5:  421 
  • 18a Percec V. Okita S. J. Polym. Sci., Part A: Polym. Chem.  1993,  31:  877 
  • 18b Morikawa A. Macromolecules  1998,  31:  5999 
  • 18c Li ZH. Wong MS. Tao Y. D’Iorio M. J. Org. Chem.  2004,  69:  921 
  • 18d Lee M. Jang C.-J. Ryu J.-H. J. Am. Chem. Soc.  2004,  126:  8082 
  • 18e Ryu J.-H. Jang C.-J. Yoo Y.-S. Lim S.-G. Lee M. J. Org. Chem.  2005,  70:  8956 
  • 18f Welter S. Salluce N. Benetti A. Rot N. Belser P. Sonar P. Grimsdale AC. Müllen K. Lutz M. Spek AL. de Cola L. Inorg. Chem.  2005,  44:  4706 
  • 19 Thiemann F. Piehler T. Haase D. Saak W. Lützen A. Eur. J. Org. Chem.  2005,  1991 
  • 20 Umzawa H. Okada S. Oikawa H. Matsuda H. Nakanishi H. J. Phys. Org. Chem.  2005,  18:  468 
  • 21 Howell SJ. Spencer N. Philp D. Tetrahedron  2001,  57:  4945 
  • 23 Yabunouchi N, and Moriwaki F. inventors; WO  2007,080,704. This compound has been described before, however, using a different synthetic approach giving 15 in considerably lower yield, see ref 14c. It has also been described in a recent Japanese patent (written in Japanese): ; Chem. Abstr. 2007, 147, 166040
  • 24 The nitro compound 17 and the amino compound 16 have been described before, however, they were obtained in very low yields by nitration of p-quaterphenyl to give 17 and subsequent reduction to give 16, see ref 14a. Furthermore, these compounds are also listed in some Japanese patents, however, without any data concerning their synthesis or characterization. Finally, 17 has also been described in a theoretical study concerning organic electrodes: Solak AO. Eichhorst LR. Clark WJ. McCreery RL. Anal. Chem.  2003,  75:  296 
12

Koch, R.; Finnerty, J. J.; Bruhn, T. J. Phys. Org. Chem. submitted for publication.

15

In the past p-quaterphenyl syntheses were achieved by cyclotrimerizations of acetylenes, Diels-Alder reactions of cyclopentadienones and subsequent aromatization, Wittig reactions of cinnamaldehydes followed by Diels-Alder reactions with acetylenedicarboxylates and subsequent aromatization, addition of Grignard reagents to arenes, Grignard reactions with p-quinones and subsequent dehydration, or Ullmann-type coupling reactions. For a detailed list of references see citations 20-25 listed in ref 9.

16

For a detailed list of references see citations 26-30 listed in ref 9.

22

This compound has been described in some Japanese patents, however, without any data concerning its synthesis no characterization.